Tempered and colorless antimicrobial soda lime glass and methods of making and using same

    公开(公告)号:US10723652B2

    公开(公告)日:2020-07-28

    申请号:US15324173

    申请日:2015-07-06

    Abstract: Described herein are various antimicrobial soda lime glass articles that have improved resistance to discoloration when exposed to harsh conditions, including manufacturing conditions. The improved antimicrobial glass articles described herein generally include a SLG substrate that has a thickness, t; a compressive stress layer of about 0.15*t or greater; and an antimicrobial agent-containing region having an antimicrobial agent and a thickness less than the thickness of the compressive stress layer. Roughly 2 to 20 microns of the primary surfaces of the glass substrate can be removed prior to development of the compressive stress and antimicrobial agent-containing region. In some aspects, prior-annealed and tempered, or prior-annealed, SLG is employed as the substrate. In some aspects, the substrate includes tin at one surface. The improved SLG substrates experience substantially no discoloration when exposed to harsh conditions. Methods of making and using the glass articles are also described.

    METHODS AND APPARATUS FOR DETERMINING A CRUSH STRENGTH OF AN EDGE

    公开(公告)号:US20200056968A1

    公开(公告)日:2020-02-20

    申请号:US16537004

    申请日:2019-08-09

    Abstract: A test apparatus comprises a probe movably mounted relative to a carrier. The probe comprises an end portion with a surface area of about 5 mm2 or less. The test apparatus can be used in methods of determining a crush strength of an edge of a substrate. Methods can comprise aligning the probe with a test location of the substrate at a predetermined angle relative to a probe axis. Methods can further comprise applying a mechanical force to the test location with the probe in the direction of the probe axis. Also, methods can comprise increasing the mechanical force applied by the probe until the substrate cracks or a predefined force applied by the probe is reached. Based on the mechanical force applied by the probe, a crush strength of an edge can be determined.

Patent Agency Ranking