摘要:
A method of calculating an optical system (OS) of an ophthalmic lens according to a given spectacle frame comprising the steps of: providing geometrical data of the spectacle frame, providing wearer data, and optimization of the optical system (OS) according to at least the criteria consisting of the geometrical data of the spectacle frame, the wearer data and at least one positioning data, so as to generate at least two optical surfaces (S1, S2).
摘要:
A method for the determination of a progressive ophthalmic lens for a given wearer comprises the states of: determining the axial length (LA) of the wearer's eye, determining an ergorama associating a sight point with each direction of viewing under wearing conditions, determining power and resulting astigmatism defect targets for each direction of viewing under wearing conditions, the targets being a function of the axial length of the wearer's eye, calculating the power required on the lens for each direction of viewing by successive iterations in order to obtain the target power defect and the target resulting astigmatism.
摘要:
A method for determining an ophthalmic lens includes choosing an initial lens with a first face and a second face and defining an initial surface for the second face of the lens with a central zone of diameter Dini and a peripheral zone of inner diameter Drac greater than the diameter Dini of the central zone, each point of the central zone and the peripheral zone having an altitude defined with respect to an axis (Z) normal to the second face of the lens and having the centre of the central zone as its origin, the altitude of the peripheral zone being defined as the minimum of the points situated on the diameter Drac; the peripheral zone having a maximum radius of curvature comprised between the maximum radius of curvature of the first face and the maximum radius of curvature of the central zone.
摘要:
An ophthalmic lens has a complex surface with an optical centre, a fitting cross (FC) situated 4 mm above the optical centre, a meridian having a power addition between reference points in far vision (FV) and in near vision (NV). The complex surface has a mean-sphere difference normalized to the addition on the meridian, between the geometric centre of the lens and the control point in far vision, less than or equal to 0.1; a progression length less than or equal to 14 mm; a rebound of the sphere quantity normalized to the addition on a circle with a radius of 20 mm centred on the geometric centre of the lens less than 0.11, and a maximum slope of the sphere variation normalized to the addition along the meridian comprised between 0.9 and 0.11 mm−1. The lens is suited to broadened far vision with a good accessibility to near vision.
摘要:
The present disclosure provides systems and methods for determining an ophthalmic lens. In one implementation, three-dimensional coordinates of a center of rotation of the wearer's eye measured on the wearer in binocular vision are received. At least one direction of gaze measured in a natural posture and a determined position of the ophthalmic lens are received. Characteristics of the ophthalmic lens are calculated by using the coordinates measured for the center of rotation of the eye, the determined position of the lens, and the at least one direction of gaze measured in a natural posture. The characteristics of the ophthalmic lens are calculated by positioning a starting ophthalmic lens in the determined position and modifying the starting ophthalmic lens by wavefront analysis and/or optimizing using ray tracing dependent on the coordinates measured for the center of rotation of the eye and the determined position of the lens.
摘要:
The invention relates to a method of determining an ophthalmic lens for a wearer's eye, the method comprising the following steps: measurement, on the wearer in binocular vision, of the three-dimensional coordinates of the centre of rotation (COR) of the wearer's eye; measurement (10) of at least one viewing direction in a natural posture; determination of the desired position of the ophthalmic lens; calculation of the characteristics of the ophthalmic lens using the measured coordinates and the determined position and the measured direction in the natural posture. Measuring the position of the centre of rotation of the eye in binocular vision ensures that the lens obtained is best adapted for the wearer.
摘要:
The invention relates to a progressive ophthalmic lens and to a method of producing one such lens. Variations in the optical power and the astigmatism of a progressive ophthalmic lens (10) result from (i) spherical and cylindrical variations in the anterior face (2) of the lens and (ii) variations in another physical unit of the lens. In this way, it is possible to customise the design of the progressive lens as a function of at least one behavioural characteristic of the lens wearer. Said customisation can be repeated by modulating the values of the physical unit between the different points of the lens. As a result, progressive lenses with different designs can be obtained from identical semi-finished lenses. The physical unit can comprise the sphere and the cylinder of the posterior face of the lens (3).
摘要:
A method for the determination of a progressive ophthalmic lens for a given wearer comprises the stages of: determining the axial length (LA) of the wearer's eye, determining an ergorama associating a sight point with each direction of viewing under wearing conditions, determining power and resulting astigmatism defect targets for each direction of viewing under wearing conditions, the targets being a function of the axial length of the wearer's eye, calculating the power required on the lens for each direction of viewing by successive iterations in order to obtain the target power defect and the target resulting astigmatism.
摘要:
An ophthalmic lens has a complex surface with a fitting cross, a progression meridian having a power addition greater than or equal to 1.5 diopters between far vision and near vision reference points. The complex surface has within a circle of radius 20 mm centered on the geometrical center of the lens, a cylinder value normalized to the addition of less than 0.8, and a rebound of the sphere quantity normalized to the addition of less than 0.04 on said circle. The surface also has a progression length less than or equal to 14 mm, defined as the vertical distance between the fitting cross and the point on the meridian for which the mean sphere reaches 85% of the addition.The lens is suited to hypermetropic wearers with a good perceptual comfort in peripheral vision and good accessibility in near vision.
摘要:
The invention relates to an ophthalmic lens for long-sighted and intermediate vision comprising a complex surface provided with an optical centre, a substantially umbilicated meridian line and an average size sphere progression on the top surface equal to or greater than 0.50 diopters. The complex surface is provided in the top part thereof with a long-sighted vision area which is formed by cylinder points equal to or less than 0.25 diopters and covers an angular sector focused on the optical centre and whose angle is equal to 160°. Said complex surface also comprises an average size substantially constant sphere on the meridian line in the long-sighted vision area and a progression length equal to or less than 12 mm. Said progression length is defined as a vertical distance between the optical centre and a median point for which the average sphere if greater than 85% of progression on the average sphere in the optical centre. The inventive lens is suitable for driving and prescribed to persons having additional prescription greater than a power progression, whereby a correction adaptable to the power prescription of a longsighted vision person is provided in the top part of the lens. The lower part of the lens ensures the correction needed for an intermediate vision person.