Abstract:
A molded article containing a copolymer including a tetrafluoroethylene unit and a perfluoro(alkyl vinyl ether) unit, wherein a surface roughness Ra of the molded article is 0.20 μm or less, and a water contact angle of the molded article is 80 degrees or less. Also disclosed is a method for producing the molded article.
Abstract:
A laminate including: a fluororesin layer (A) containing a fluororesin having a fuel permeability coefficient of 2.0 g·mm/m2/day or lower; and a fluorine-free resin layer (B) containing a fluorine-free resin having a SP value of 11.5 to 13.5 (cal/cm3)1/2 and a fuel permeability coefficient of 1.0 g·mm/m2/day or lower.
Abstract:
A sheet containing a carbon fiber and a fluororesin layer disposed around a carbon monofilament constituting the carbon fiber. A fluororesin constituting the fluororesin layer is polyvinylidene fluoride. Further, the sheet has a tensile strength of 400 MPa or higher. Also disclosed is a laminate including a first layer and a second layer that is disposed on the first layer and that includes the sheet; a pipe including the laminate; a riser tube including the pipe and a flowline including the pipe.
Abstract:
The invention provides a laminate having high elastic modulus retention even at high temperature and having moderate hardness. The laminate includes a layer (A) formed from a fluororesin and a layer (B) formed from a polyamide resin. The fluororesin is a copolymer containing a copolymerized unit of tetrafluoroethylene and a copolymerized unit of vinylidene fluoride, and has a storage elastic modulus (E′) of 60 to 400 MPa measured by dynamic mechanical analysis at 170° C.
Abstract:
The invention provides a fluororesin that is less likely to suffer blistering or cracking even when rapidly decompressed from a high-temperature and high-pressure state. The fluororesin contains a vinylidene fluoride unit. The vinylidene fluoride unit represents 10.0 to 100 mol % of all the monomer units constituting the fluororesin. The fluororesin exhibits a weight loss of 0.1% or less after heated at 300° C. for two hours.
Abstract:
The present invention aims to provide a laminate in which a fluororesin layer and a fluororubber layer are firmly bonded. The present invention relates to a laminate including: a fluororubber layer (A); and a fluororesin layer (B) stacked on the fluororubber layer (A), the fluororubber layer (A) being formed from a fluororubber composition, the fluororubber composition containing a fluororubber, a low molecular weight polytetrafluoroethylene, and a multifunctional compound, the amount of the multifunctional compound being 5 parts by mass or more relative to 100 parts by mass of the fluororubber.
Abstract:
The present invention aims to provide a laminate in which a fluororesin layer and a fluororubber layer are firmly bonded even when the fluororesin layer contains a fluororesin having excellently low fuel permeability. The present invention relates to a laminate including a fluororubber layer (A) and a fluororesin layer (B) stacked on the fluororubber layer (A). The fluororubber layer (A) is a layer formed from a fluororubber composition. The fluororubber composition contains a fluororubber (a1) and a basic multifunctional compound having at least two nitrogen atoms in the molecule with a distance between the nitrogen atoms in the molecule of 5.70 Å or greater. The fluororubber (a1) has an absorption coefficient at 1720 cm−1, determined after being brought into contact with triethyl amine, of 0.35 or lower. The fluororesin layer (B) is formed from a fluororesin (b1) having a fuel permeability coefficient of 2.0 g·mm/m2/day or lower.