摘要:
A method for mounting the micro spring structures onto cables or contact structures includes forming a spring island having an “upside-down” stress bias on a first release material layer or directly on a substrate, forming a second release material over at least a portion of the spring island, and then forming a base structure over the second release material layer. The micro spring structure is then transferred in an unreleased state, inverted such that the base structure contacts a surface of a selected apparatus, and then secured (e.g., using solder reflow techniques) such that the micro spring structure becomes attached to the apparatus. The spring structure is then released by etching or otherwise removing the release material layer(s).
摘要:
A method for mounting the micro spring structures onto cables or contact structures includes forming a spring island having an “upside-down” stress bias on a first release material layer or directly on a substrate, forming a second release material over at least a portion of the spring island, and then forming a base structure over the second release material layer. The micro spring structure is then transferred in an unreleased state, inverted such that the base structure contacts a surface of a selected apparatus, and then secured (e.g., using solder reflow techniques) such that the micro spring structure becomes attached to the apparatus. The spring structure is then released by etching or otherwise removing the release material layer(s).
摘要:
An imager circuit includes an array of pixels, each pixel including a sensor (photodiode) connected to an input terminal of a comparator. The comparators of each pixel row have output terminals connected to a latch. A counter generates a sequence of digital values that are transmitted to a digital-to-analog converter (DAC) and to the latch of each row. The DAC generates a ramp voltage that is transmitted to a second input terminal of each pixel's comparator. The comparators of a selected pixel column are enabled to generate output signals when the ramp voltage equals each pixel's voltage, causing the associated latches to capture the current digital values. The comparators are formed such that each pixel row shares a cascode mirror circuit that detects differential currents in data line pairs connected to each pixel in that row.
摘要:
A new type of high-Q variable capacitor includes a substrate, a first electrically conductive layer fixed to the substrate, a dielectric layer fixed to a portion of the electrically conductive layer, and a second electrically conductive layer having an anchor portion and a free portion. The anchor portion is fixed to the dielectric layer and the free portion is initially fixed to the dielectric layer, but is released from the dielectric layer to become separated from the dielectric layer, and wherein an inherent stress profile in the second electrically conductive layer biases the free portion away from the dielectric layer. When a bias voltage is applied between the first electrically conductive layer and the second electrically conductive layer, electrostatic forces in the free portion bend the free portion towards the first electrically conductive layer, thereby increasing the capacitance of the capacitor.
摘要:
The present invention encompasses a control system and method for systems of producing and consuming units. The method of the invention includes the steps of setting each producing unit to have an output responsive to an analog signal representative of a market price, and connecting each producing unit to a marketwire, with the changes in the analog signal on the marketwire representing changes in the market price resulting from inputs from the consuming units and the output response of each producing unit.
摘要:
A new type of high-Q variable capacitor includes a substrate, a first electrically conductive layer fixed to the substrate, a dielectric layer fixed to a portion of the electrically conductive layer, and a second electrically conductive layer having an anchor portion and a free portion. The anchor portion is fixed to the dielectric layer and the free portion is initially fixed to the dielectric layer, but is released from the dielectric layer to become separated from the dielectric layer, and wherein an inherent stress profile in the second electrically conductive layer biases the free portion away from the dielectric layer. When a bias voltage is applied between the first electrically conductive layer and the second electrically conductive layer, electrostatic forces in the free portion bend the free portion towards the first electrically conductive layer, thereby increasing the capacitance of the capacitor.