Abstract:
Novel Group 4 metal complexes wherein the metal is in the +2, +3, or +4 formal oxidation state containing two ligand groups bound by n-electrons, at least one of which is a cyclic or noncyclic, non-aromatic, anionic, dienyl ligand group and having a bridged ligand structure, catalytic derivatives of such complexes; and the use thereof as catalysts for polymerizing addition polymerizable monomers are disclosed.
Abstract:
A gas phase olefin polymerization wherein the catalyst comprises a novel Group 4 transition metal complex containing a boron or aluminum bridging group containing a nitrogen containing group, especially an amido group.
Abstract:
A support for use in preparing supported catalysts for addition polymerizations comprising the reaction product of: (A) an inorganic oxide material comprising reactive surface hydroxyl groups, at least some of said hydroxyl groups optionally having been functionalized an converted to a reactive silano moiety corresponding to the formula: --OSiR.sub.2 H, wherein R, independently each occurrence, is hydrogen C.sub.1-20 hydrocarbyl, or C.sub.1-20 hydrocarbyloxy, said inorganic oxide or functionalized derivative thereof comprising less than 1.0 mmol of reactive surface hydroxyl functionality per gram, and (B) an activator compound comprising: b.sub.1) a cation which is capable of reacting with a transition metal compound to form a catalytically active transition metal complex, and b.sub.2) a compatible anion containing at least one substituent able to react with the inorgnaic oxide, with residual hydroxyl functionality of the inorganic oxide, or with the reactive silane moiety, hereby covalently bonding the compatible anion to the support, catalysts formed therefrom, process of manufacture and the method to use.
Abstract:
Compositions of matter useful as addition polymerization catalysts comprising a Group 4 metal complex and an adduct of tris(organyl)borane compound with a non-tertiary amine or non-tertiary phosphine compound.
Abstract:
Novel Group 4 metal complexes wherein the metal is in the +2 or +4 formal oxidation state containing a cyclic or noncyclic, non-aromatic, anionic, dienyl ligand group bound to M and having a bridged ligand structure, catalytic derivatives of such complexes including novel zwitterionic complexes; and the use thereof as catalysts for polymerizing addition polymerizable monomers are disclosed.
Abstract:
Novel Group 4, Group 3 or Lanthanide metal complexes wherein the metal is in the +3 formal oxidation state containing a cyclic or non-cyclic, nonaromatic, anionic, dienyl ligand group bound to M and having a bridged ligand structure, catalytic derivatives of such complexes; and the use thereof as catalysts for polymerizing addition polymerizable monomers are disclosed.