摘要:
A system, method and computer program product for translations in a computer system. The system includes a general purpose register containing a base address of an address translation table. The system also includes a millicode accessible special displacement register configured to receive a plurality of elements to be translated. The system further includes a multiplexer for selecting a particular one of the plurality of elements from the millicode accessible special displacement register and for generating a displacement or offset value. The system further includes an address generator for creating a combined address containing the base address from the general purpose register and the generated displacement or offset value.
摘要:
A method for decimal multiplication in a superscaler processor comprising: obtaining a first operand and a second operand; establishing a multiplier and an effective multiplicand from the first operand and the second operand; and generating and accumulating a partial product term every two cycles. The partial product terms are created from the effective multiplicand and multiples of the multiplier, where the effective multiplicand is stored in a first register file, the multiples being ones times the effective multiplier, two times the effective multiplier, four times the effective multiplier and eight times the effective multiplier and the partial product terms are added to an accumulation of previous partial product terms shifted one digit right such that a digit shifted off is preserved as a result digit.
摘要:
A method of implementing binary multiplication in a processing device includes obtaining a multiplicand and a multiplier from a storage device; in the event the multiplier is larger than a selected length, partitioning the multiplier into a plurality of multiplier subgroups; in the event the multiplicand is larger than a selected length, partitioning the multiplicand into a plurality of multiplicand subgroups and at least one of zeroing out of unused bits of the multiplicand subgroup and sign-extending a smaller portion of the multiplicand subgroup; establishing a plurality of multiplicand multiples based on at least one of a selected multiplicand subgroup of the plurality of multiplicand subgroups and the multiplicand; selecting one or more of the multiplicand multiples of the plurality of multiplicand multiples based on the each multiplier subgroup of the plurality of multiplier subgroups; and generating a first modular product based on the selected multiplicand multiples.
摘要:
A method for creating precise exceptions including checkpointing an exception causing instruction. The checkpointing results in a current checkpointed state. The current checkpointed state is locked. It is determined if any of a plurality of registers require restoration to the current checkpointed state. One or more of the registers are restored to the current checkpointed state in response to the results of the determining indicating that the one or more registers require the restoring. The execution unit is restarted at the exception handler or the next sequential instruction dependent on whether traps are enabled for the exception.
摘要:
A method of pre-aligning data for storage during instruction execution improves performance by eliminating the cycles otherwise required for data alignment. The method can convert data between ASCII and Packed Decimal format, and between Unicode Basic Latin and Packed Decimal format. Conversion to Packed Decimal format is needed for decimal hardware in a microprocessor designed to generate decimal results. Converting from Packed Decimal to ASCII and Unicode Basic Latin is necessary to report Decimal Arithmetic results in a required format for the application program. To further improve performance, all available write ports in the fixed point unit (FXU) are utilized to reduce the number of cycles necessary to store results. To prevent data fetching of the unused destination data from slowing down instruction execution, the destination locations are tested for storage access exceptions, but the data for these operands are not actually fetched. A single read request from the FXU to the operand buffers effectively reads the entire destination address (up to 8 double-words of data) in a single cycle.
摘要:
A method for decimal multiplication in a superscaler processor comprising: obtaining a first operand and a second operand; establishing a multiplier and an effective multiplicand from the first operand and the second operand; and generating and accumulating a partial product term every two cycles. The partial product terms are created from the effective multiplicand and multiples of the multiplier, where the effective multiplicand is stored in a first register file, the multiples being ones times the effective multiplier, two times the effective multiplier, four times the effective multiplier and eight times the effective multiplier and the partial product terms are added to an accumulation of previous partial product terms shifted one digit right such that a digit shifted off is preserved as a result digit.
摘要:
A system for binary multiplication in a superscalar processor includes a first pipeline, an execution unit, and a first multiplexer; a first rotator in communication with one register of the first pipeline and the execution unit; and a leading zero detection register in communication with the execution unit and another register of the first pipeline; a second pipeline, a second execution unit, and a second multiplexer; a rotator in communication with one register of the second pipeline and the second execution unit; and a leading zero detection register in communication with the second execution unit and another register of the first pipeline; and a third pipeline, a binary multiplier in communication with a pair registers of the third pipeline; a general register; an operand buffer for obtaining first and second operands; and a bus for communication between the pipelines, the general register and the operand buffer.
摘要:
A method and apparatuses for performing binary multiplication on signed and unsigned operands of various lengths is discussed herein. It is a concept that may be split into two parts, the first of which is the multiplication hardware itself, a compact, less than-full sized multiplier employing Booth or other type of recoding methods upon the multiplier to reduce the number of partial products per scan, and implemented in such a manner so that a multiplication operation with large operands may be broken into subgroups of operations that will fit into this mid-sized multiplier whose results, here called modular products, may be knitted back together to form a correct, final product. The second part of the concept is the supporting hardware used to separate the operands into subgroups and input the data and control signals to the multiplier, and the algorithms and apparatuses used to align and combine the modular products properly to obtain the final product. These algorithms used to obtain a result as specified by the operation may be as varied as the supporting hardware with which the multiplier may be used, making this multiplier a very flexible and powerful design.
摘要:
A method of decimal division in a superscalar processor comprising: obtaining a first operand and a second operand; establishing a dividend and a divisor from the first operand and the second operand; determining a quotient digit and a resulting partial remainder; based on multiple parallel/simultaneous subtractions of at least one of the divisor and a multiple of the divisor from the dividend, utilizing dataflow elements of multiple execution pipes of the superscalar processor.
摘要:
In a computer system, a method and apparatus for dispatching and executing multi-cycle and complex instructions. The method results in maximum performance for such without impacting other areas in the processor such as decode, grouping or dispatch units. This invention allows multi-cycle and complex instructions to be dispatched to one port but executed in multiple execution pipes without cracking the instruction and without limiting it to a single execution pipe. Some control signals are generated in the dispatch unit and dispatched with the instruction to the Fixed Point Unit (FXU). The FXU logic then execute these instructions on the available FXU pipes. This method results in optimum performance with little or no other complications. The presented technique places the flexibility of how these instructions will be executed in the FXU, where the actual execution takes place, instead of in the instruction decode or dispatch units or cracking by the compiler.