Abstract:
A method and apparatus for transmitting and receiving signal in communication system. A method of a base station includes: configuring frequency spreading sequences each of which corresponds to a transmission starting time point; configuring time spreading sequences each of which corresponds to a terminal; and transmitting information on the frequency spreading sequences and the time spreading sequences to a plurality of terminals, wherein one of the frequency spreading sequences and one of the time spreading sequences are assigned to each of the plurality of terminals.
Abstract:
A method of reestablishing a radio link which is performed by a wireless communication device that communicates with a peer node includes monitoring quality of a radio link used for communication with the peer node, determining whether radio link reestablishment is needed when the quality of the radio link is less than or equal to a reference value, determining a beam search parameter using at least one of information on the activation status of the radio link and mobility information of the peer node, performing a beam search necessary for radio link reestablishment according to the beam search parameter, and reestablishing a radio link with the peer node using a found beam.
Abstract:
An operation method of a first communication node in a communication network, which supports a radio link control (RLC) function among functions of a base station, may comprise receiving a first message from a second communication node supporting a packet data convergence protocol (PDCP) function among the functions of the base station; processing the received first message by performing the RLC function; and transmitting the processed first message to a third communication node supporting a medium access control (MAC) function and physical (PHY) functions among the functions of the base station.
Abstract:
A radio link setup method performed by a first communication node constituting a wireless communication network may comprise transmitting a first master discovery signal including a first sector identifier and a first beam index of the first communication node to a second communication node by using a master sector among a plurality of sectors of the first communication node; receiving a first slave discovery signal including a second sector identifier and a second beam index of the second communication node receiving the first master discovery signal; in response to the first slave discovery signal, transmitting a feedback message including the second sector identifier and the second beam index to the second communication node; and determining a beam for transmission and reception with the second communication node based on the first sector identifier, the first beam index, the second sector identifier, and the second beam index.
Abstract:
Provided is an encoding apparatus for integrally encoding and decoding a speech signal and a audio signal, and may include: an input signal analyzer to analyze a characteristic of an input signal; a stereo encoder to down mix the input signal to a mono signal when the input signal is a stereo signal, and to extract stereo sound image information; a frequency band expander to expand a frequency band of the input signal; a sampling rate converter to convert a sampling rate ; a speech signal encoder to encode the input signal using a speech encoding module when the input signal is a speech characteristics signal; a audio signal encoder to encode the input signal using a audio encoding module when the input signal is a audio characteristic signal; and a bitstream generator to generate a bitstream.
Abstract:
Provided is an encoding apparatus for integrally encoding and decoding a speech signal and a audio signal, and may include: an input signal analyzer to analyze a characteristic of an input signal; a stereo encoder to down mix the input signal to a mono signal when the input signal is a stereo signal, and to extract stereo sound image information; a frequency band expander to expand a frequency band of the input signal; a sampling rate converter to convert a sampling rate; a speech signal encoder to encode the input signal using a speech encoding module when the input signal is a speech characteristics signal; a audio signal encoder to encode the input signal using a audio encoding module when the input signal is a audio characteristic signal; and a bitstream generator to generate a bitstream.
Abstract:
Disclosed are a method of device-to-device discovery and an apparatus for the same. A method of device-to-device discovery performed in a discovery terminal may include receiving a discovery identifier of the discovery terminal from a device-to-device server; performing an authorization procedure on performing the restricted discovery of an application located in the discovery terminal with the device-to-device server; and obtaining terminal information of a discoverable terminal as a counterpart terminal with which performs the restricted discovery from the device-to-device server, when the authorization is completed. Thus, the device-to-device discovery may be performed efficiently.
Abstract:
Provided are an apparatus and a method for integrally encoding and decoding a speech signal and a audio signal. The encoding apparatus may include: an input signal analyzer to analyze a characteristic of an input signal; a first conversion encoder to convert the input signal to a frequency domain signal, and to encode the input signal when the input signal is a audio characteristic signal; a Linear Predictive Coding (LPC) encoder to perform LPC encoding of the input signal when the input signal is a speech characteristic signal; and a bitstream generator to generate a bitstream using an output signal of the first conversion encoder and an output signal of the LPC encoder.