Abstract:
A gate is disposed so as to be opened to a cavity portion for forming a plate body part for forming a fuel injection device nozzle plate, and the cavity portion forms a portion surrounded by a plurality of nozzle holes. There are no differences in the times required for the molten resin injected from the gate into the cavity to reach portions for forming the plurality of nozzle holes. As a result, a molding failure of the nozzle holes and the vicinity thereof caused by differences in the charge speeds of molten resin can be prevented and the shapes of the nozzle holes and the vicinity thereof can be formed accurately.
Abstract:
A fuel injection device nozzle plate includes a cylindrical fitting part to be fitted onto the front end side of a metal valve body having a fuel injection port and a bottom wall part formed so as to block one end side of the cylindrical fitting part. The bottom wall part abuts against a front end surface of the valve body and has a nozzle hole. In addition, the cylindrical fitting part and the bottom wall part are made of synthetic resin and formed integrally. The valve body has an outer periphery around which an interlocking projection is formed. An arm part of synthetic resin engaging with the interlocking projection is formed integrally with the cylindrical fitting part and the cylindrical fitting part is fixed to the valve body when the arm part engages with the interlocking projection when the bottom wall part abuts against the front end surface.
Abstract:
In a nozzle plate for a fuel injection device which can inject fuel flowed out from a fuel injection port of the fuel injection device in a sufficiently atomized state, a portion of fuel which flows in the inside of a nozzle hole impinges on an interference element, is sharply bent so as to flow backward by an impinging surface of the interference element which is formed of an annular recessed surface, is made to impinge on fuel which intends to advance straightly and pass through the nozzle hole and the orifice, and forms the flow of the fuel which intends to advance straightly and pass through the nozzle hole and the orifice into a turbulent flow. As a result, the nozzle plate for a fuel injection device further enhances the level of the atomization of fuel.