Abstract:
A control method for an inverter apparatus is provided. The inverter apparatus includes a direct current to direct current (DC/DC) converter and a direct current to alternating current (DC/AC) converter. An output side of the DC/DC converter is coupled to an input side of the DC/AC converter. The control method includes the following steps: outputting a DC power from the output side of the DC/DC converter; receiving the DC power from the input side of the DC/AC converter, and generating an AC power from an output side of the DC/AC converter according to the DC power; and detecting the DC power, and accordingly controlling an operation of the DC/AC converter.
Abstract:
An inverting apparatus and a photovoltaic power system using the same are provided. The inverting apparatus includes an inverting circuit, a control circuit, and a voltage regulator-based ground detection circuit. The control circuit controls the power conversion of the inverting circuit. The voltage regulator-based ground detection circuit samples an input voltage of the DC input power, and performs voltage regulation and voltage division on the input voltage to generate a ground indication voltage. The electric potential of the output terminal of the voltage regulator is built based on a photovoltaic ground terminal of a photovoltaic module. The ground indication voltage is the voltage difference between an output terminal of the voltage regulator and a device ground terminal of the inverting apparatus. The control circuit determines whether a ground fault occurs to the photovoltaic module and enables a ground protection mechanism to control the inverting circuit when the ground fault occurs.
Abstract:
An inverting apparatus and a detection method of an islanding operation are provided. The inverting apparatus includes an inverting circuit and a control circuit; the inverting circuit is connected to a power grid, wherein the inverting circuit receives a DC input power, and converts the DC input power into an AC output voltage and an AC output current; the control circuit is coupled to the inverting circuit; the control circuit is configured to control the power conversion of the inverting circuit, wherein the control circuit generates a disturbance signal base on a preset time interval to disturb the AC output current generated by the inverting circuit, and detects whether the frequency of the AC output voltage is located within a preset frequency range, so as to decide whether to enable an islanding protection mechanism.
Abstract:
An inverter apparatus is provided. The inverter apparatus includes a direct current to direct current (DC/DC) converter, a direct current to alternating current (DC/AC) converter and a control circuit. The DC/DC converter is arranged for converting an input power to a DC power according to a control signal. The DC/AC converter is coupled to the DC/DC converter, and is arranged for receiving the DC power, and generating an AC power according to the DC power. The control circuit is coupled to the DC/DC converter, and is arranged for generating the control signal according to a reference power and the input power so as to control an operation of the DC/DC converter, detecting the control signal to generate a detection result, and controlling the reference power according to the detection result so as to adjust a duty cycle of the control signal.
Abstract:
An inverter apparatus includes a direct current to direct current converter (DC/DC converter), a direct current to alternating current converter (DC/AC converter), a primary-side control circuit and a secondary-side control circuit. The DC/DC converter is arranged for outputting a first DC power and a second DC power. The DC/AC converter is coupled to the DC/DC converter, and is arranged for receiving the first DC power. The primary-side control circuit is coupled to the DC/DC converter, and is arranged for controlling an operation of the DC/DC converter. The secondary-side control circuit is coupled to the DC/DC converter and the DC/AC converter, and is arranged for receiving the second DC power, and controlling an operation of the DC/AC converter according to the second DC power.