Abstract:
Systems and methods are disclosed for improving acceleration performance of an electric vehicle that includes an electric motor for propulsion. An exemplary system may include an inverter configured to drive the electric motor. The inverter may include at least one power electronic device. The system may also include a torque capability controller. The torque capability controller may be configured to receive information indicative of a selection between a first mode and a second mode. The second mode may correspond to a higher torque to be output by the electric motor than the first mode. The torque capability controller may also be configured to apply a switching frequency to the at least one power electronic device. The switching frequency may have a lower value when the received information indicates the selection of the second mode than when the received information indicates the selection of the first mode.
Abstract:
In one aspect, an apparatus includes a motor and inverter configured to provide input power to the motor. The apparatus may also include a data store comprising at least one entry including a first torque command, a first motor speed, and a first DC voltage value, where the first torque command and the first motor speed and the first DC voltage value are associated with a first current output and a processor. The processor receives a torque input, a DC voltage input, and a motor speed input and identifies the current output associated with the torque input, the DC voltage input, and the motor speed input based on another motor speed different than the motor speed input and another DC voltage different than the DC voltage input and the motor speed input, and output the determined current output to cause the inverter to provide the input power to the motor.
Abstract:
Power inverter assemblies are provided herein for use with motor vehicles. An inverter assembly may have a symmetrical structure configured to convert DC input power to AC output power. The inverter assembly may include a housing enclosing a symmetrical DC input portion, a symmetrical AC output portion, a DC link capacitor, and a gate drive portion having a pair of power modules. The symmetrical DC input portion can include a DC input bus bar sub-assembly to which the DC link capacitor is coupled, and a second DC bus bar sub-assembly that may electrically couple the DC link capacitor with the power modules. The symmetrical AC output portion may include a three phase output AC bus bar sub-assembly to which the power modules can be electrically coupled. A cooling sub-assembly may be provided for cooling the power modules with fluid transfer using a coolant.
Abstract:
A system for interconnecting parallel insulated gate bipolar transistor (IGBT) modules is provided. A pair of switches selected from a plurality of the IGBT modules are assigned to a driver integrated circuit (IC). In the pair of switches, a master IGBT switch is selected, the other switch being a slave IGBT switch. A command signal from the driver IC is electrically coupled to both the master and slave IGBT switches. The master and slave IGBT switches both have protective circuits; however, the driver IC is electrically coupled to the protective circuits of the selected master IGBT switch only. The protective circuits include temperature and current sense circuits. The plurality of the IGBT modules may be formed by two hexpack power modules. The modules are configured such that only a single driver IC is needed for each pair of parallel IGBT switches, with equal current sharing of the paralleled modules.
Abstract:
A system for interconnecting parallel insulated gate bipolar transistor (IGBT) modules is provided. A pair of switches selected from a plurality of the IGBT modules are assigned to a driver integrated circuit (IC). In the pair of switches, a master IGBT switch is selected, the other switch being a slave IGBT switch. A command signal from the driver IC is electrically coupled to both the master and slave IGBT switches. The master and slave IGBT switches both have protective circuits; however, the driver IC is electrically coupled to the protective circuits of the selected master IGBT switch only. The protective circuits include temperature and current sense circuits. The plurality of the IGBT modules may be formed by two hexpack power modules. The modules are configured such that only a single driver IC is needed for each pair of parallel IGBT switches, with equal current sharing of the paralleled modules.
Abstract:
Power inverter assemblies are provided herein for use with motor vehicles. An inverter assembly may have a symmetrical structure configured to convert DC input power to AC output power. The inverter assembly may include a housing enclosing a symmetrical DC input portion, a symmetrical AC output portion, a DC link capacitor, and a gate drive portion having a pair of power modules. The symmetrical DC input portion can include a DC input bus bar sub-assembly to which the DC link capacitor is coupled, and a second DC bus bar sub-assembly that may electrically couple the DC link capacitor with the power modules. The symmetrical AC output portion may include a three phase output AC bus bar sub-assembly to which the power modules can be electrically coupled. A cooling sub-assembly may be provided for cooling the power modules with fluid transfer using a coolant.
Abstract:
Systems and methods are disclosed for improving acceleration performance of an electric vehicle that includes an electric motor for propulsion. An exemplary system may include an inverter configured to drive the electric motor. The inverter may include at least one power electronic device. The system may also include a torque capability controller. The torque capability controller may be configured to receive information indicative of a selection between a first mode and a second mode. The second mode may correspond to a higher torque to be output by the electric motor than the first mode. The torque capability controller may also be configured to apply a switching frequency to the at least one power electronic device. The switching frequency may have a lower value when the received information indicates the selection of the second mode than when the received information indicates the selection of the first mode.