Abstract:
A rotor assembly includes plural blades and damping inserts. The blades include a carrier shroud and a lid shroud extending from an airfoil of the respective blade in generally opposite directions. The carrier shrouds define pockets at distal ends thereof. The damping inserts are disposed in the pockets of the carrier shrouds of the blades and free-floating within the pockets. The damping inserts are configured to dampen vibrations of the blades during rotation of the blades and the rotor disk via engaging an interior surface within the corresponding pocket of the carrier shroud and engaging a distal end of the lid shroud of the neighboring blade. A contact force applied by each damping insert on the distal end of the lid shroud of the neighboring blade is based on a rotational speed of the blades and the rotor disk.
Abstract:
Damping members for turbocharger assemblies, methods for providing turbocharger assemblies, and turbocharger assemblies are described herein. The damping members include bodies having shapes to fit between a recess extending into a rotor disk of a turbocharger and laterally protruding shoulders of platforms in neighboring blades of the turbocharger. The bodies dampen vibrations of the blades during rotation of the blades. The damping members may include a variety of shapes, such as a sheet, a wedge, a tapered pin, a cylindrical pin, a bent sheet, or another shape.
Abstract:
A variable pitch airfoil assembly for an engine includes a disk having an annular shape extending about an axial direction and an airfoil coupled to the disk via a platform. The airfoil extends outwardly from the disk in a radial direction and is rotatable relative to the disk about a pitch axis. The variable pitch airfoil assembly further includes a damping element positioned at least partially within the disk exterior of and adjacent to a perimeter of the platform so as to provide vibration damping by friction between the damping element, the platform, and the disk while also allowing for a pitch change of the airfoil.
Abstract:
A turbine damper may be provided that may include an elongated body sized to fit inside a turbine blade, the elongated body elongated along a radial direction of the turbine blade relative to a rotation axis of the turbine blade, and plural dampening masses coupled with the elongated body and disposed at different locations along the radial direction. The plural dampening masses may be one or more of sized to dampen different vibration modes of the turbine blade, or moveable relative to and along the elongated body in the radial direction.
Abstract:
A rotating airfoil including a body and a vibration absorber located within the body. The body has a root end and a tip. The rotating airfoil has a natural frequency, and the vibration absorber has a natural frequency. The natural frequency of the vibration absorber is different than the natural frequency of the rotating airfoil.
Abstract:
A rotating airfoil assembly including a rotation axis and a plurality of rotating airfoils configured to rotate about the rotation axis. Each rotating airfoil of the rotating airfoils includes a leading edge, a trailing edge, a suction surface between the leading edge and the trailing edge, and a pressure surface between the leading edge and the trailing edge. The suction surface and the pressure surface are positioned on opposite sides of the rotating airfoil such that, when airflows over the suction surface and the pressure surface of the rotating airfoil as the rotating airfoil rotates about the rotation axis, the rotating airfoil generates lift. At least one opening is located on one of the suction surface or the pressure surface. The at least one opening is configured to eject air or to draw air into the opening.
Abstract:
A turbine damper may be provided that may include an elongated body sized to fit inside a turbine blade, the elongated body elongated along a radial direction of the turbine blade relative to a rotation axis of the turbine blade, and plural dampening masses coupled with the elongated body and disposed at different locations along the radial direction. The plural dampening masses may be one or more of sized to dampen different vibration modes of the turbine blade, or moveable relative to and along the elongated body in the radial direction.
Abstract:
A system and method are provided for operating and maintaining a wind turbine. Accordingly, a plurality of data inputs are received. The plurality of data inputs represent a plurality of monitored attributes of a component of the wind turbine. A consolidated risk index for the component is determined using the plurality of monitored attributes, and a range of potential risk indices is forecasted. A remaining-useful-life distribution is determined based on the damage potential and an end-of-life damage threshold. The wind turbine is shut down or idled if the remaining-useful-life distribution is below a shutdown threshold.
Abstract:
Damping members for turbocharger assemblies, methods for providing turbocharger assemblies, and turbocharger assemblies are described herein. The damping members include bodies having shapes to fit between a recess extending into a rotor disk of a turbocharger and laterally protruding shoulders of platforms in neighboring blades of the turbocharger. The bodies dampen vibrations of the blades during rotation of the blades. The damping members may include a variety of shapes, such as a sheet, a wedge, a tapered pin, a cylindrical pin, a bent sheet, or another shape.
Abstract:
A rotor assembly includes plural blades and damping inserts. The blades include a carrier shroud and a lid shroud extending from an airfoil of the respective blade in generally opposite directions. The carrier shrouds define pockets at distal ends thereof. The damping inserts are disposed in the pockets of the carrier shrouds of the blades and free-floating within the pockets. The damping inserts are configured to dampen vibrations of the blades during rotation of the blades and the rotor disk via engaging an interior surface within the corresponding pocket of the carrier shroud and engaging a distal end of the lid shroud of the neighboring blade. A contact force applied by each damping insert on the distal end of the lid shroud of the neighboring blade is based on a rotational speed of the blades and the rotor disk.