Abstract:
A route examining system includes first and second detection units and an identification unit. The first and second detection units are configured to be disposed onboard a vehicle system traveling along a route having plural conductive tracks. The first and second detection units are disposed at spaced apart locations along a length of the vehicle system. The first and second detection units are configured to monitor one or more electrical characteristics of the conductive tracks in response to an examination signal being electrically injected into at least one of the conductive tracks. The identification unit includes one or more processors configured to determine that a section of the route includes an electrical short responsive to the one or more electrical characteristics monitored by the first and second detection units indicating that the examination signal is received by only one of the first and second detection units.
Abstract:
A system for measuring nutritional parameters of food items is provided. The system includes a holding cavity. The system further includes a sensor assembly that includes a transmitter antenna and at least one receiver antenna. The transmitter antenna is configured to transmit signals to a food item in the holding cavity. The receiver antenna is configured to receive response signals from the food item. The system includes at least one switch coupled to each antenna. The switch, in a first state, is configured to set the sensor assembly to an electric potential equal to that of the holding cavity. In a second state, the switch is configured to couple the sensor assembly to a power source. The system also includes a processing unit to process the signals received to determine the nutritional parameters of the food item.
Abstract:
A route examination system and method automatically detect (with an identification unit onboard a vehicle having one or more processors) a location of a break in conductivity of a first route during movement of the vehicle along the first route. The system and method also identify (with the identification unit) one or more of a location of the vehicle on the first route or the first route from among several different routes based at least in part on the location of the break in the conductivity of the first route that is detected.
Abstract:
An automatic portable inspection system includes a part holder for holding a component to be inspected and a rotary actuator coupled to the part holder. The system further includes an eddy current probe for scanning the component and providing eddy current signals. The system also includes a self-alignment unit coupled to the eddy current probe and configured to align an axis of the probe substantially perpendicular to a surface of the component and to maintain constant contact with said surface of the component. The system also includes a linear actuator coupled to the self-alignment unit, for providing movement of the eddy current probe along the X, Y and Z axes. A motion control unit is coupled to the rotary actuator and the linear actuator, for controlling the rotary actuator and the linear actuator for moving said probe about the component in accordance with a scan plan.
Abstract:
A route examining system includes first and second application devices, a control unit, first and second detection units, and an identification unit. The first and second application devices are disposed onboard a vehicle traveling along a route having conductive tracks. The control unit controls injection of a first examination signal into the conductive tracks via the first application device and injection of a second examination signal into the conductive tracks via the second application device. The first and second detection units monitor electrical characteristics of the route in response to the first and second examination signals being injected into the conductive tracks. The identification unit examines the electrical characteristics of the conductive tracks in order to determine whether a section of the route is potentially damaged based on the electrical characteristics.