-
公开(公告)号:US09594972B2
公开(公告)日:2017-03-14
申请号:US15158520
申请日:2016-05-18
Applicant: GOOGLE INC.
Inventor: Xiaohang Wang , Farhan Shamsi , Yakov Okshtein , Sanjiv Kumar , Henry Allan Rowley , Marcus Quintana Mitchell , Debra Lin Repenning , Alessandro Bissacco , Justin Scheiner , Leon Palm
CPC classification number: G06K9/3283 , G06K9/00469 , G06K9/18 , G06K9/228 , G06K9/325 , G06K9/40 , G06K2009/363 , G06K2209/01
Abstract: Extracting financial card information with relaxed alignment comprises a method to receive an image of a card, determine one or more edge finder zones in locations of the image, and identify lines in the one or more edge finder zones. The method further identifies one or more quadrilaterals formed by intersections of extrapolations of the identified lines, determines an aspect ratio of the one or more quadrilateral, and compares the determined aspect ratios of the quadrilateral to an expected aspect ratio. The method then identifies a quadrilateral that matches the expected aspect ratio and performs an optical character recognition algorithm on the rectified model. A similar method is performed on multiple cards in an image. The results of the analysis of each of the cards are compared to improve accuracy of the data.
Abstract translation: 以轻松对准的方式提取金融卡信息包括接收卡的图像的方法,在图像的位置确定一个或多个边缘查找器区域,并识别一个或多个边缘查找器区域中的线。 该方法还识别由所识别的线的外插的交点形成的一个或多个四边形,确定一个或多个四边形的纵横比,并将确定的四边形的纵横比与预期的纵横比进行比较。 然后,该方法识别与预期宽高比匹配的四边形,并在整流模型上执行光学字符识别算法。 在图像中的多个卡上执行类似的方法。 比较每个卡的分析结果,提高数据的准确性。
-
22.
公开(公告)号:US09390419B2
公开(公告)日:2016-07-12
申请号:US14447072
申请日:2014-07-30
Applicant: GOOGLE INC.
Inventor: Sanjiv Kumar , Henry Allan Rowley , Xiaohang Wang , Yakov Okshtein , Farhan Shamsi , Alessandro Bissacco
CPC classification number: G06K9/6201 , G06K9/00201 , G06K9/00469 , G06K9/00483 , G06K9/03 , G06K9/036 , G06K9/18 , G06K9/20 , G06K9/2054 , G06K9/228 , G06K9/344 , G06K9/6202 , G06K9/78 , G06K2009/2045 , G06K2209/01 , G06K2209/40 , G06Q20/322 , G06Q20/327 , G06Q20/34 , G06Q20/4016 , G06T17/00
Abstract: Comparing extracted card data from a continuous scan comprises receiving, by one or more computing devices, a digital scan of a card; obtaining a plurality of images of the card from the digital scan of the physical card; performing an optical character recognition algorithm on each of the plurality of images; comparing results of the application of the optical character recognition algorithm for each of the plurality of images; determining if a configured threshold of the results for each of the plurality of images match each other; and verifying the results when the results for each of the plurality of images match each other. Threshold confidence level for the extracted card data can be employed to determine the accuracy of the extraction. Data is further extracted from blended images and three-dimensional models of the card. Embossed text and holograms in the images may be used to prevent fraud.
Abstract translation: 比较来自连续扫描的提取的卡数据包括由一个或多个计算设备接收卡的数字扫描; 从所述物理卡的数字扫描中获取所述卡的多个图像; 对所述多个图像中的每一个执行光学字符识别算法; 比较针对所述多个图像中的每一个的所述光学字符识别算法的应用结果; 确定所述多个图像中的每一个的结果的配置阈值是否彼此匹配; 以及当多个图像中的每一个的结果彼此匹配时验证结果。 可以采用提取的卡数据的阈值置信水平来确定提取的准确性。 从混合图像和卡片的三维模型进一步提取数据。 图像中的压纹文字和全息图可能被用来防止欺诈。
-
公开(公告)号:US09367754B2
公开(公告)日:2016-06-14
申请号:US14462711
申请日:2014-08-19
Applicant: GOOGLE INC.
Inventor: Xiaohang Wang , Farhan Shamsi , Yakov Okshtein , Sanjiv Kumar , Henry Allan Rowley , Marcus Quintana Mitchell , Debra Lin Repenning , Alessandro Bissacco , Justin Scheiner , Leon Palm
CPC classification number: G06K9/3283 , G06K9/00469 , G06K9/18 , G06K9/228 , G06K9/325 , G06K9/40 , G06K2009/363 , G06K2209/01
Abstract: Extracting financial card information with relaxed alignment comprises a method to receive an image of a card, determine one or more edge finder zones in locations of the image, and identify lines in the one or more edge finder zones. The method further identifies one or more quadrilaterals formed by intersections of extrapolations of the identified lines, determines an aspect ratio of the one or more quadrilateral, and compares the determined aspect ratios of the quadrilateral to an expected aspect ratio. The method then identifies a quadrilateral that matches the expected aspect ratio and performs an optical character recognition algorithm on the rectified model. A similar method is performed on multiple cards in an image. The results of the analysis of each of the cards are compared to improve accuracy of the data.
Abstract translation: 以轻松对准的方式提取金融卡信息包括接收卡的图像的方法,在图像的位置确定一个或多个边缘查找器区域,并识别一个或多个边缘查找器区域中的线。 该方法还识别由所识别的线的外插的交点形成的一个或多个四边形,确定一个或多个四边形的纵横比,并将确定的四边形的纵横比与预期的纵横比进行比较。 然后,该方法识别与预期宽高比匹配的四边形,并在整流模型上执行光学字符识别算法。 在图像中的多个卡上执行类似的方法。 比较每个卡的分析结果,提高数据的准确性。
-
公开(公告)号:US20160132885A1
公开(公告)日:2016-05-12
申请号:US14447072
申请日:2014-07-30
Applicant: GOOGLE INC.
Inventor: Sanjiv Kumar , Henry Allan Rowley , Xiaohang Wang , Yakov Okshtein , Farhan Shamsi , Alessandro Bissacco
CPC classification number: G06K9/6201 , G06K9/00201 , G06K9/00469 , G06K9/00483 , G06K9/03 , G06K9/036 , G06K9/18 , G06K9/20 , G06K9/2054 , G06K9/228 , G06K9/344 , G06K9/6202 , G06K9/78 , G06K2009/2045 , G06K2209/01 , G06K2209/40 , G06Q20/322 , G06Q20/327 , G06Q20/34 , G06Q20/4016 , G06T17/00
Abstract: Comparing extracted card data from a continuous scan comprises receiving, by one or more computing devices, a digital scan of a card; obtaining a plurality of images of the card from the digital scan of the physical card; performing an optical character recognition algorithm on each of the plurality of images; comparing results of the application of the optical character recognition algorithm for each of the plurality of images; determining if a configured threshold of the results for each of the plurality of images match each other; and verifying the results when the results for each of the plurality of images match each other. Threshold confidence level for the extracted card data can be employed to determine the accuracy of the extraction. Data is further extracted from blended images and three-dimensional models of the card. Embossed text and holograms in the images may be used to prevent fraud.
-
公开(公告)号:US09235771B2
公开(公告)日:2016-01-12
申请号:US14091093
申请日:2013-11-26
Applicant: GOOGLE INC.
Inventor: Henry Allan Rowley , Sanjiv Kumar , Xiaohang Wang , Alessandro Bissacco , Jose Jeronimo Moreira Rodrigues , Kishore Ananda Papineni
IPC: G06K9/00 , G06K9/62 , G06K9/40 , G06K9/18 , G06K9/66 , G06T3/00 , G06Q20/22 , G06Q20/34 , G07F7/08 , G06K9/32
CPC classification number: G06K9/6269 , G06K9/00469 , G06K9/00536 , G06K9/18 , G06K9/186 , G06K9/3233 , G06K9/3258 , G06K9/46 , G06K9/6202 , G06K9/6267 , G06K9/66 , G06K2009/4666 , G06K2209/01 , G06Q20/227 , G06Q20/34 , G06T3/0012 , G06T7/11 , G06T2207/20132 , G07F7/0893
Abstract: Embodiments herein provide computer-implemented techniques for allowing a user computing device to extract financial card information using optical character recognition (“OCR”). Extracting financial card information may be improved by applying various classifiers and other transformations to the image data. For example, applying a linear classifier to the image to determine digit locations before applying the OCR algorithm allows the user computing device to use less processing capacity to extract accurate card data. The OCR application may train a classifier to use the wear patterns of a card to improve OCR algorithm performance. The OCR application may apply a linear classifier and then a nonlinear classifier to improve the performance and the accuracy of the OCR algorithm. The OCR application uses the known digit patterns used by typical credit and debit cards to improve the accuracy of the OCR algorithm.
Abstract translation: 这里的实施例提供了计算机实现的技术,用于允许用户计算设备使用光学字符识别(“OCR”)提取金融卡信息。 可以通过对图像数据应用各种分类器和其他变换来提高金融卡信息的提取。 例如,在应用OCR算法之前,对图像应用线性分类器以确定数字位置允许用户计算设备使用较少的处理能力来提取准确的卡数据。 OCR应用程序可以训练分类器来使用卡的磨损模式来改善OCR算法性能。 OCR应用可以应用线性分类器,然后应用非线性分类器来提高OCR算法的性能和准确性。 OCR应用程序使用典型的信用卡和借记卡使用的已知数字模式来提高OCR算法的准确性。
-
26.
公开(公告)号:US20150161465A1
公开(公告)日:2015-06-11
申请号:US14269777
申请日:2014-05-05
Applicant: Google Inc.
Inventor: Alessandro Bissacco , Hartmut Neven
CPC classification number: G06K9/34 , G06K9/32 , G06K9/3208 , G06K9/3233 , G06K9/342 , G06K9/6857 , G06K2209/01
Abstract: A text recognition server is configured to recognize text in a sparse text image. Specifically, given an image, the server specifies a plurality of “patches” (blocks of pixels within the image). The system applies a text detection algorithm to the patches to determine a number of the patches that contain text. This application of the text detection algorithm is used both to estimate the orientation of the image and to determine whether the image is textually sparse or textually dense. If the image is determined to be textually sparse, textual patches are identified and grouped into text regions, each of which is then separately processed by an OCR algorithm, and the recognized text for each region is combined into a result for the image as a whole.
Abstract translation: 文本识别服务器被配置为识别稀疏文本图像中的文本。 具体地,给定图像,服务器指定多个“补丁”(图像内的像素块)。 系统将文本检测算法应用于修补程序,以确定包含文本的多个修补程序。 文本检测算法的这种应用被用于估计图像的取向并确定图像是文本稀疏的还是文本密集的。 如果图像被确定为文本上稀疏的,则文本补丁被识别并分组成文本区域,然后每个文本区域被OCR算法分开处理,并且将每个区域的识别文本合并为整个图像的结果 。
-
公开(公告)号:US20150003667A1
公开(公告)日:2015-01-01
申请号:US14091093
申请日:2013-11-26
Applicant: GOOGLE INC.
Inventor: Henry Allan Rowley , Sanjiv Kumar , Xiaohang Wang , Alessandro Bissacco , Jose Jeronimo Moreira Rodrigues , Kishore Ananda Papineni
CPC classification number: G06K9/6269 , G06K9/00469 , G06K9/00536 , G06K9/18 , G06K9/186 , G06K9/3233 , G06K9/3258 , G06K9/46 , G06K9/6202 , G06K9/6267 , G06K9/66 , G06K2009/4666 , G06K2209/01 , G06Q20/227 , G06Q20/34 , G06T3/0012 , G06T7/11 , G06T2207/20132 , G07F7/0893
Abstract: Embodiments herein provide computer-implemented techniques for allowing a user computing device to extract financial card information using optical character recognition (“OCR”). Extracting financial card information may be improved by applying various classifiers and other transformations to the image data. For example, applying a linear classifier to the image to determine digit locations before applying the OCR algorithm allows the user computing device to use less processing capacity to extract accurate card data. The OCR application may train a classifier to use the wear patterns of a card to improve OCR algorithm performance. The OCR application may apply a linear classifier and then a nonlinear classifier to improve the performance and the accuracy of the OCR algorithm. The OCR application uses the known digit patterns used by typical credit and debit cards to improve the accuracy of the OCR algorithm.
Abstract translation: 这里的实施例提供了计算机实现的技术,用于允许用户计算设备使用光学字符识别(“OCR”)提取金融卡信息。 可以通过对图像数据应用各种分类器和其他变换来提高金融卡信息的提取。 例如,在应用OCR算法之前,对图像应用线性分类器以确定数字位置允许用户计算设备使用较少的处理能力来提取准确的卡数据。 OCR应用程序可以训练分类器来使用卡的磨损模式来改善OCR算法性能。 OCR应用程序可以应用线性分类器,然后应用非线性分类器来提高OCR算法的性能和准确性。 OCR应用程序使用典型的信用卡和借记卡使用的已知数字模式来提高OCR算法的准确性。
-
公开(公告)号:US20140286573A1
公开(公告)日:2014-09-25
申请号:US14296781
申请日:2014-06-05
Applicant: Google Inc.
Inventor: Bo Wu , Alessandro Bissacco , Raymond W. Smith , Kong Man Cheung , Andrea Frome , Shlomo Urbach
IPC: G06K9/18
CPC classification number: G06K9/3258 , G06K9/00 , G06K9/18 , G06K2209/01 , G06Q50/10
Abstract: A system and method is provided for automatically recognizing building numbers in street level images. In one aspect, a processor selects a street level image that is likely to be near an address of interest. The processor identifies those portions of the image that are visually similar to street numbers, and then extracts the numeric values of the characters displayed in such portions. If an extracted value corresponds with the building number of the address of interest such as being substantially equal to the address of interest, the extracted value and the image portion are displayed to a human operator. The human operator confirms, by looking at the image portion, whether the image portion appears to be a building number that matches the extracted value. If so, the processor stores a value that associates that building number with the street level image.
Abstract translation: 提供了一种用于自动识别街道图像中的建筑物编号的系统和方法。 在一个方面,处理器选择可能靠近感兴趣的地址的街道级图像。 处理器识别图像中与街道号码视觉相似的那些部分,然后提取在这些部分中显示的字符的数值。 如果提取的值对应于感兴趣的地址的建筑物号码,例如基本上等于感兴趣的地址,则提取的值和图像部分被显示给人类操作者。 人类操作者通过观察图像部分来确认图像部分是否看起来是与提取的值相匹配的建筑物号码。 如果是这样,处理器存储将建筑物号码与街道图像相关联的值。
-
-
-
-
-
-
-