Abstract:
This technology relates to optimizing location and orientation information of an image using known locations of places captured within the image. For example, an image and associated pose data including the image's orientation and location may be received. One or more places captured within the image may be determined, with each place having a respective known location. The image may be annotated with the one or more places. A difference between each annotation and its respective known location to obtain updated pose data of the image may be minimized and the associated pose data may be updated to the updated pose data.
Abstract:
Aspects of the present disclosure relate to generating turn-by-turn direction previews. In one aspect, one or more computing devices, may receive a request for a turn-by-turn direction preview. The one or more computing devices may generate a set of turn-by-turn directions based on a series of road segments connecting a first geographic location and a second geographic location. Each direction in the set of turn-by-turn directions may be associated with a corresponding waypoint. The one or more computing devices then identify a set of images corresponding the series of road segments between two adjacent waypoints of the set of turn-by-turn directions, and determine a subset of the set of images to include in the turn-by-turn direction preview. Subsequently, the one or more computing devices may generate the turn-by-turn direction preview based on at least in part on the determined subset of the set of images.
Abstract:
Near real-time imagery of a given location may be provided to user upon request. Most popularly viewed geographic locations are determined, and a 360 degree image capture device is positioned at one or more of the determined locations. The image capture device may continually provide image information, which is processed, for example, to remove personal information and filter spam. Such image information may then be provided to users upon request. The image capture device continually captures multiple views of the given location, and the requesting user can select which perspective to view.
Abstract:
Methods, systems, and computer program products for transitioning an interface to a related image are provided. A method for transitioning an interface to a related image may include receiving information describing a homography between a first image and a second image, and adjusting the interface to present the second image at one or more transition intervals in a transition period until the second image is fully displayed and the first image is no longer visible. The interface may be adjusted by determining, based on the homography, a region of the second image to overlay onto a corresponding area of the first image, blending the determined region with the corresponding area to reduce visible seams occurring between the first image and the second image, and updating the interface by gradually decreasing visual intensity of the first image while gradually and proportionally increasing visual intensity of the second image.
Abstract:
A method and system is disclosed for simulating different types of camera lens on a device by guiding a user through a set of images to be captured in connection with one or more desired lens effects. In one aspect, a wide-angle lens may be simulated by taking a plurality of images that have been taken at a particular location over a set of camera orientations that are determined based on the selection of the wide-angle lens. The mobile device may provide prompts to the user indicating the camera orientations for which images should be captured in order to generate the simulated camera lens effect.
Abstract:
Aspects of the present disclosure relate to generating turn-by-turn direction previews. In one aspect, one or more computing devices, may receive a request for a turn-by-turn direction preview. The one or more computing devices may generate a set of turn-by-turn directions based on a series of road segments connecting a first geographic location and a second geographic location. Each direction in the set of turn-by-turn directions may be associated with a corresponding waypoint. The one or more computing devices then identify a set of images corresponding the series of road segments between two adjacent waypoints of the set of turn-by-turn directions, and determine a subset of the set of images to include in the turn-by-turn direction preview. Subsequently, the one or more computing devices may generate the turn-by-turn direction preview based on at least in part on the determined subset of the set of images.
Abstract:
Aspects of the present disclosure relate to generating turn-by-turn direction previews. In one aspect, one or more computing devices, may receive a request for a turn-by-turn direction preview. The one or more computing devices may generate a set of turn-by-turn directions based on a series of road segments connecting a first geographic location and a second geographic location. Each direction in the set of turn-by-turn directions may be associated with a corresponding waypoint. The one or more computing devices then identify a set of images corresponding the series of road segments between two adjacent waypoints of the set of turn-by-turn directions, and determine a subset of the set of images to include in the turn-by-turn direction preview. Subsequently, the one or more computing devices may generate the turn-by-turn direction preview based on at least in part on the determined subset of the set of images.
Abstract:
A panorama viewer is disclosed which facilitates navigation from within the panorama of a larger, structured system such as a map. The panorama viewer presents a viewport on a portion of a panoramic image, the viewport including a three-dimensional overlay rendered with the panoramic image. As the orientation of the viewport within the panoramic image changes, the three-dimensional overlay's orientation in three-dimensional space also changes as it is rendered with the panoramic image in a manner that matches the change in orientation of the viewport.
Abstract:
A panorama viewer is disclosed which facilitates navigation from within the panorama of a larger, structured system such as a map. The panorama viewer presents a viewport on a portion of a panoramic image, the viewport including a three-dimensional overlay rendered with the panoramic image. As the orientation of the viewport within the panoramic image changes, the three-dimensional overlay's orientation in three-dimensional space also changes as it is rendered with the panoramic image in a manner that matches the change in orientation of the viewport.
Abstract:
A system and method is provided that displays cursors for street level images, where the cursor changes appearance based on the objects in the image, such as the geographic distance between the objects and the camera position and the surface of the objects. For example, the cursor may appear to lie flat against the objects in the image change size based on the distance between the camera and object's surface.