Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training scoring models. One method includes storing data identifying a plurality of positive and a plurality of negative training images for a query. The method further includes selecting a first image from either the positive group of images or the negative group of images, and applying a scoring model to the first image. The method further includes selecting a plurality of candidate images from the other group of images, applying the scoring model to each of the candidate images, and then selecting a second image from the candidate images according to scores for the images. The method further includes determining that the scores for the first image and the second image fail to satisfy a criterion, updating the scoring model, and storing the updated scoring model.
Abstract:
Implementations include systems and methods for scoring candidates for set recommendation problems. An example method includes repeating, for each code in code arrays for items in a set of items, determining a most common value for the code. In some implementations, the method includes determining that the most common value occurs with a frequency that meets an occurrence threshold and adding the code and the most common value to set-inclusion criteria. In other implementations, the method includes determining a value for the code from a code array for a seed item and adding the code and the most common value to set-inclusion criteria when the value for the code from the code array for the seed item matches the most common value. The method may also include evaluating a similarity with a candidate item based on the set-inclusion criteria and basing a recommendation regarding the candidate item on the similarity.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for classification using a neural network. One of the methods for processing an input through each of multiple layers of a neural network to generate an output, wherein each of the multiple layers of the neural network includes a respective multiple nodes includes for a particular layer of the multiple layers: receiving, by a classification system, an activation vector as input for the particular layer, selecting one or more nodes in the particular layer using the activation vector and a hash table that maps numeric values to nodes in the particular layer, and processing the activation vector using the selected nodes to generate an output for the particular layer.
Abstract:
A method includes identifying a named entity, retrieving images associated with the named entity, and using a face detection algorithm to perform face detection on the retrieved images to detect faces in the retrieved images. At least one representative face image from the retrieved images is identified, and the representative face image is used to identify one or more additional images representing the at least one named entity.
Abstract:
A method and system include identifying, by a processing device, at least one media clip captured by at least one camera for an event, detecting at least one human object in the at least one media clip, and calculating, by the processing device, a region in the at least one media clip containing a focus of attention of the detected human object.
Abstract:
A volume identification system identifies a set of unlabeled spatio-temporal volumes within each of a set of videos, each volume representing a distinct object or action. The volume identification system further determines, for each of the videos, a set of volume-level features characterizing the volume as a whole. In one embodiment, the features are based on a codebook and describe the temporal and spatial relationships of different codebook entries of the volume. The volume identification system uses the volume-level features, in conjunction with existing labels assigned to the videos as a whole, to label with high confidence some subset of the identified volumes, e.g., by employing consistency learning or training and application of weak volume classifiers.The labeled volumes may be used for a number of applications, such as training strong volume classifiers, improving video search (including locating individual volumes), and creating composite videos based on identified volumes.
Abstract:
Methods and systems permit automatic matching of videos with images from dense image-based geographic information systems. In some embodiments, video data including image frames is accessed. The video data may be segmented to determine a first image frame of a segment of the video data. Data representing information from the first image frame may be automatically compared with data representing information from a plurality of image frames of an image-based geographic information data system. Such a comparison may, for example, involve a search for a best match between geometric features, histograms, color data, texture data, etc. of the compared images. Based on the automatic comparing, an association between the video and one or more images of the image-based geographic information data system may be generated. The association may represent a geographic correlation between selected images of the system and the video data.
Abstract:
A computing system may process a plurality of audiovisual files to determine a mapping between audio characteristics and visual characteristics. The computing system may process an audio playlist to determine audio characteristics of the audio playlist. The computing system may determine, using the mapping, visual characteristics that are complementary to the audio characteristics of the audio playlist. The computing system may search a plurality of images to find one or more image(s) that have the determined visual characteristics. The computing system may link or associate the one or more image(s) that have the determined visual characteristics to the audio playlist such that the one or more images are displayed on a screen of the computing device during playback of the audio playlist.