摘要:
Implantable systems that can monitor myocardial electrical stability, and methods for use therewith, are provided. Also provided are novel pacing sequences that are used in such monitoring. Such pacing sequences are designed to reveal alternans at low to moderate heart rates.
摘要:
Provided herein are implantable systems, and methods for use therewith, for estimating a level of noise in a signal produced by an implantable sensor that is sensitive to motion induced noise. Sample data is obtained that is representative of a window of a signal produced by the implantable sensor that is sensitive to motion induced noise. Such sample data includes a plurality of samples each having a magnitude (e.g., amplitude). Each of at least some of the samples is assigned to one of a plurality of bins based on the magnitude of the sample, wherein each bin corresponds to a different range of magnitudes. The plurality of bins includes at least a low bin defining a lowest magnitude range and a high bin defining a highest magnitude range. A level of motion induced noise in the sensor signal is estimated based on a distribution of the samples to the bins.
摘要:
Methods and systems are provided for performing ventricular arrhythmia monitoring using at least two sensing channels that are each associated with different sensing vectors, for example by different pairs of extracardiac remote sensing electrodes. Myopotential associated with each of the sensing channels in monitored, and a ventricular arrhythmia monitoring mode is selected based thereon (e.g., based on determined myopotential levels). Ventricular arrhythmia monitoring is then performed using the selected monitoring mode. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
摘要:
A bioelectric battery may be used to power implantable devices. The bioelectric battery may have an anode electrode and a cathode electrode separated by an insulating member comprising a tube having a first end and a second end, wherein said anode is inserted into said first end of said tube and said cathode surrounds said tube such that the tube provides a support for the cathode electrode. The bioelectric battery may also have a membrane surrounding the cathode to reduce tissue encapsulation. Alternatively, an anode electrode, a cathode electrode surrounding the cathode electrode, a permeable membrane surrounding the cathode electrode. An electrolyte is disposed within the permeable membrane and a mesh surrounds the permeable membrane. In an alternative embodiment, a pacemaker housing acts as a cathode electrode for a bioelectric battery and an anode electrode is attached to the housing with an insulative adhesive.
摘要:
Techniques are provided for controlling neurostimulation such as spinal cord stimulation (SCS) using a cardiac rhythm management device (CRMD). In various examples described herein, neurostimulation is delivered to a patient while regional cardiac performance of the heart of the patient is assessed by the CRMD. The delivery of further neurostimulation is adjusted or controlled based, at least in part, on the regional cardiac performance, preferably to enhance positive effects on the heart due to the neurostimulation or to mitigate any negative effects. Regional cardiac performance is assessed based on parameters derived from cardiogenic impedance signals detected along various vectors through the heart.
摘要:
A bioelectric battery may be used to power implantable devices. The bioelectric battery may have an anode electrode and a cathode electrode separated by an insulating member comprising a tube having a first end and a second end, wherein said anode is inserted into said first end of said tube and said cathode surrounds said tube such that the tube provides a support for the cathode electrode. The bioelectric battery may also have a membrane surrounding the cathode to reduce tissue encapsulation. Alternatively, an anode electrode, a cathode electrode surrounding the cathode electrode, a permeable membrane surrounding the cathode electrode. An electrolyte is disposed within the permeable membrane and a mesh surrounds the permeable membrane. In an alternative embodiment, a pacemaker housing acts as a cathode electrode for a bioelectric battery and an anode electrode is attached to the housing with an insulative adhesive.
摘要:
Specific embodiments of the present invention determine a range of a physiologic property, for each of a plurality of periods of time, and monitor changes in the patient's heart disease based on changes in the range. Other embodiments determine a minimum of a physiologic property, for each of a plurality of periods of time, and monitor changes in the patient's heart disease based on changes in the minimum. Still other embodiments determine a maximum of the physiologic property, for each of a plurality of periods of time, and monitor changes in the patient's heart disease based on changes in the maximum.
摘要:
Implantable systems and method for use therewith are provided that take advantage of various neuromodulation and neurosensing techniques for either preventing atrial fibrillation (AF) or terminating AF. Specific embodiments are for use with an implantable device that includes one or more atrial electrode for sensing atrial fibrillation (AF) and/or delivering AATP and one or more electrode for monitoring and/or stimulating atrial vagal fat pads.
摘要:
Implantable systems, and method for use therewith, are provided that take advantage of various neuromodulation and neurosensing techniques for either preventing atrial fibrillation (AF) or terminating AF. Specific embodiments, as will be described below, are for use with an implantable device that include one or more atrial electrode for sensing atrial fibrillation (AF) and/or delivering AATP and one or more electrode for monitoring and/or stimulating atrial vagal fat pads.
摘要:
Methods and systems are provided for performing ventricular arrhythmia monitoring using at least two sensing channels that are each associated with different sensing vectors, for example by different pairs of extracardiac remote sensing electrodes. Myopotential associated with each of the sensing channels in monitored, and a ventricular arrhythmia monitoring mode is selected based thereon (e.g., based on determined myopotential levels). Ventricular arrhythmia monitoring is then performed using the selected monitoring mode. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.