摘要:
A method for compression includes applying a discrete cosine transform to said image data to obtain transform coefficients, quantizing the transform coefficients by applying a quantization level scaled through a gain value, adjusting the gain value as a function of desired image parameters by executing a first time said quantization operation applying a first gain value and obtaining first quantized data, estimating statistically a second gain value suitable to obtain the desired image parameters, and executing a second time said quantization operation applying said second gain value. The operation of statistical estimation of the second gain value includes evaluating a threshold value as a function of the desired image parameters and setting to zero a percentage of coefficients of the first quantized data as a function of the threshold value.
摘要:
The system carries out conversion of digital video signals organized in blocks of pixels from a first format to a second format. The second format is a format compressed via vector quantization. The vector quantization is performed by means of repeated application of a scalar quantizer to the pixels of said blocks with a quantization step (Q) determined in an adaptive way according to the characteristics of sharpness and/or brightness of the pixels and representing said vector quantization in a n-dimensional space indicative of the characteristics on n of said pixels in the block partitioned into cells of size proportional to said quantization step, each cell being assigned to an appropriate binary code, wherein said process further includes identifying at least one symmetry element in said n-dimensional space suitable for separating at least two symmetrical set of cells, and selecting one of said at least two symmetrical set of cells for the assignment of said binary codes. A symmetrical permutation on the n pixels of the block is performed according the selection and a part of said binary code indicating the status of said symmetrical permutation is conveniently set.
摘要:
An embodiment relates to a method and an image processor for reducing chroma noise in digital-image data. An embodiment performs noise reduction in the color-filter-array domain prior to demosaicing in order to prevent spreading of noise in subsequent stages of the image-processing pipeline. Peaks in the CFA data are attenuated in order to prevent any undesired color cast. Specifically, any correction to a certain pixel is made in accordance with the amplitude of digital gains applied, as well as with the local luminance and the contribution of the current color channel to the local luminance. In this manner, corrections are restricted to image areas that are subject to high digital amplification, that are comparatively dark, and that are not dominated by the current color channel.
摘要:
A method for estimating the white Gaussian noise level that corrupts a digital image by discriminating homogeneous blocks from blocks containing a textured area and skipping these last blocks when evaluating the noise standard deviation.
摘要:
According to the novel method, roto-translational and zooming parameters describing spurious motion effects are determined by exploiting any of the many block matching algorithms commonly used for motion estimation for calculating a motion vector for all or for a selected number of blocks of pixels of the current frame that is processed. Some of the so calculated motion vectors are not taken into account for estimating spurious motion effects. The roto-translational and zooming parameters describing what is considered to be spurious global motion between a current frame and the precedent frame of the sequence, are calculated by processing the selected motion vectors of blocks of pixels of the frame through a recursive procedure that includes computing error values and readjusting the roto-translational and zooming parameters based on the error values.
摘要:
A method for correcting an image from defects and filtering from Gaussian noise corrects each pixel of the image when it is considered defective and filters it from Gaussian noise in one-pass. The one-pass improves the speed for performing the correcting and filtering. The drawbacks associated with choosing incompatible defect correction and filtering operations are overcome.