Abstract:
An example embodiment of an air bearing assembly includes at least a first member and a shaft with a flange configured to rotate with respect to the first member. The first member has a coating on at least one surface facing at least one of the shaft and the flange. The coating includes tungsten carbide, a nonpolymeric self-lubricating coating, or a combination thereof.
Abstract:
A disclosed method of hard coating a wear surface of a valve of an aircraft air management system is performed by depositing a hardface alloy powder onto the wear surface, heating the wear surface and the hardface alloy powder to transform the hardface alloy powder into a molten liquid mass, and subsequently cooling the molten liquid hardface alloy mass to solidify the hardface alloy onto the wear surface. The disclosed process provides for localized application and subsequent bonding of the hardface alloy to discrete portions of the wear surface. The solidified hardface alloy coating may then be machined to obtain specific wear surface geometries.
Abstract:
A first stage turbine nozzle includes a first stage hub portion extending axially along a central axis, a first stage disk portion attached to the first stage hub portion and centered on the central axis, and a plurality of first stage vanes positioned radially around and attached to the first stage disk portion. Each vane extends a vane height H away from the first stage disk portion and each vane has a first end positioned at a diameter D away from the central axis. The first stage turbine nozzle also includes a plurality of first stage throats defined between radially adjacent first stage vanes. Each first stage throat has a throat width W between radially adjacent first stage vanes. The first stage turbine nozzle also includes a coating on a sidewall of each first stage vane, wherein a surface roughness of the sidewall is between 125 and 200.
Abstract:
A vane for a variable diffuser includes a body with an inlet end and an outlet end, a leading surface extending from the inlet end to the outlet end, a trailing surface opposite the leading surface and extending from the inlet end to the outlet end, a first surface extending from the inlet end to the outlet end, and a second surface opposite the first surface and extending from the inlet end to the outlet end. The vane further includes a first cavity on the first surface of the vane adjacent the inlet end, a second cavity on the first surface of the vane adjacent the outlet end, a third cavity on the second surface of the vane adjacent the inlet end, and a fourth cavity on the second surface of the vane adjacent the outlet end.
Abstract:
A rotary metering valve assembly includes a stationary body plate having a first contact surface. Also included is a valve plate having a second contact surface disposed in contact with the first contact surface of the stationary body plate, wherein the valve plate is configured to rotate relative to the stationary body plate. At least one of the first contact surface and the second contact surface comprises a surface flatness of less than about 2.4 μm (about 93 μin) and a surface roughness of at least about 0.2 μm (about 8 μin).
Abstract:
A valve is provided and includes a component including a surface and a wear plate including a surface disposed in sliding engagement with the surface of the component. The surface of the wear plate includes a corrosion resistant substrate, a secondary layer disposed on a surface of the corrosion resistant substrate, a noble metal layer disposed on a surface of the secondary layer and a tertiary layer disposed on a surface of the noble metal layer.