Abstract:
An excitation circuit includes an operational amplifier, a transistor circuit, a switch, and a pull-down resistor. The operational amplifier receives an excitation input voltage at a non-inverting input and provides an operational amplifier output. The transistor circuit receives the operational amplifier output and provides a transistor circuit output. The transistor circuit output is connected to an inverting input of the operational amplifier. The switch is connected between the operational amplifier output and the transistor circuit. The switch is opened to disconnect the operational amplifier output from the transistor circuit. The pull-down resistor is connected between an output of the switch and ground, wherein the pull-down resistor turns off the transistor circuit when the analog switch is opened.
Abstract:
A fault detection circuit is utilized to automatically detect faults in hold-up power storage devices. The fault detection circuit includes a hold-up monitoring circuit and a memory device. The hold-up monitoring circuit is connected to monitor output of the hold-up power storage device, wherein the hold-up monitoring circuit measures a duration of time that the hold-up power storage device provides sufficient power following a loss of normal power and detects faults based on the measured duration of time. The memory device is connected to store the duration of time measured by the hold-up power storage device following a loss of normal power.
Abstract:
A weapon management system includes a management device, interface units, software downloaded into the interface units, a power network, and a communication network. The power network provides electrical power to the management device and the interface units. The communication network connects the management device to the interface units for transferring electrical signals and data between the components. The interface units and the software downloaded into the interface units are highly reconfigurable, allowing for simple, easy, and fast configurability and expandability for evolving weapon systems. Further, the weapon management system has the capability to add interface units to an existing architecture for expanding and evolving weapon systems.
Abstract:
A linear motor actuator includes a plurality of stators mounted stationary relative to one another along a common actuation axis. A translator rod is mounted to the stators for linear motion relative to the stators along the actuation axis, wherein each stator is magnetically coupled to the translator rod to drive motion of the translator rod along the actuation axis.
Abstract:
An example actuator assembly includes an actuator configured to move a rod. A variable differential transformer (VDT) is situated adjacent to the actuator. The VDT includes a core coupled to the rod such that movement of the rod causes a corresponding movement of the core. A plurality of windings surround the core for measuring displacement of the core. A shield surrounds the plurality of windings and shields the plurality of windings from a magnetic field of the actuator. The shield having a maximum permeability of 50,000-500,000. A LVDT configuration method is also disclosed.
Abstract:
A method for testing autonomous reconfiguration logic for an electromechanical actuator includes executing a plurality of test cases against a computer model configured and operable to implement autonomous reconfiguration logic for an electromechanical actuator including a plurality of electromechanical motors to generate a first set of test results. The method further includes executing the plurality of test cases against a programmable logic device configured and operable to implement the autonomous reconfiguration logic for the electromechanical actuator to generate a second set of test results and comparing the first set of test results to the second set of test results.
Abstract:
According to an aspect, a sever system includes a non-volatile storage device with a plurality of loadable configuration data and a configurable sever logic circuit configured responsive to a transfer of the loadable configuration data to perform a plurality of operations. The operations include mapping a plurality of module-level sever logic inputs to a plurality of module-specific sever logic functions as defined in the loadable configuration data. The module-level sever logic inputs are monitored by the configurable sever logic circuit based on the module-specific sever logic functions for a sever condition. A sever command to disconnect one or more outputs of a plurality of modules is triggered based on the module-specific sever logic functions and the module-level sever logic inputs.
Abstract:
A system includes a computing system and a cable connector. The computing system includes a plurality of processors and an interconnect circuit configured to connect the plurality of processors to each other. The cable connector is configured to connect to the interconnect circuit and provide a channel identifier to the computing system, and the interconnect circuit is configured to set one of the plurality of processors as a system controller based on the channel identifier.
Abstract:
Embodiments in include a system, a method, and a computer program product for performing intelligent load shedding for multi-channel processing system. The embodiments include a multi-channel processing system, wherein each channel of the multi-channel processing system includes a plurality of processors, and a plurality of links coupling each channel with each other channel in the multi-channel processing system, wherein the links are used to transmit status information of the plurality of processors. The embodiments also include a plurality of cooling elements coupled to each channel having the plurality of processors, wherein the plurality of cooling elements are configured to remove heat from the multi-channel processing system.
Abstract:
An example actuator control system includes a variable differential transformer (VDT) configured to measure displacement of a motor, and a motor controller configured to control the motor based on displacement data from the VDT. A circuit card assembly (CCA) interconnects the VDT to the motor controller. The CCA includes memory storing configuration data of the VDT, and the CCA is configured to provide the configuration data to the motor controller to calibrate the motor controller for use of the VDT. A method of configuring a motor controller is also disclosed.