Abstract:
A rotary actuator has a hollow motor and hollow reduction gears arranged coaxially on either side of the hollow motor. A rotary shaft is arranged so as to pass through a hollow motor shaft of the hollow motor. The hollow reduction gears have hollow input shafts connected to the shaft ends on either sides of the hollow motor shaft. The hollow reduction gears have hollow output shafts connected to sections of the rotary shaft protruding from both ends of the hollow motor shaft. The connection position of the hollow output shaft with respect to the rotary shaft can be adjusted in the rotational direction. A load is rotationally driven by the rotary shaft. By increasing the axial length of the hollow motor, it is possible to obtain a small-diameter rotary actuator having a rotational output with large torque.
Abstract:
Disclosed is a variable compression ration mechanism in which a control shaft is rotated and driven by an electric motor through a wave gear reducer. The wave gear reducer includes: a first internal gear member; an external gear member arranged concentrically inside the internal gear member; a wave generator arranged inside the external gear member; and a second internal gear member, wherein a ratio of the number of teeth of a fixed gear portion of the first internal gear member to the number of teeth of a first gear portion of the external gear member is set lower than a ratio of the number of teeth of an output-side gear portion of the second internal gear member to the number of teeth of a second gear portion of the external gear member.
Abstract:
An externally toothed gear of a dual-type strain wave gearing is provided with first and second external teeth having different tooth numbers, and is flexed into an ellipsoidal shape by a wave generator. When the theoretical values of the radial flexing amounts at major-axis positions of the first and second external teeth flexed into the ellipsoidal shape are expressed by d1=m1n1 and d2=m2n2 (m1 and m2 represent the modules of the first and second external teeth, and n1 and n2 represent positive integers), the radial flexing amount of the first and second external teeth flexed by the wave generator satisfies d=(d1+d2)/ω (1.4≦ω≦2.6). Accordingly, a dual-type strain wave gearing can be achieved with which the first and second external teeth having different numbers can be suitably flexed to form excellent mating states with respective internally toothed gears.
Abstract:
The externally toothed gear of the strain wave gear device is provided with first external teeth, which are capable of meshing with first internal teeth on the stationary side, and second external teeth, which are capable of meshing with second internal teeth on the driving side. The numbers of the first and second external teeth differ. The number of the first internal teeth is greater than the number of the first external teeth. The number of the second internal teeth is less than the number of the second external teeth. Using the externally toothed gear, which is provided with first and second external teeth that differ in number, a strain wave gear device with a low reduction ratio in which the velocity ratio is less than 30 can be achieved.
Abstract:
In this hollow strain wave gearing unit, a shaft end part of a hollow rotary shaft of a wave generator is located inside a cup-shaped flexible external gear. The shaft end part is supported by a bearing attached to a bearing holder that is fixed to a boss of the flexible external gear. In the bearing holder, an elastic leaf spring part that is displaceable in the axial direction constitutes a part that supports a holder body part that holds the bearing. A preload is applied by the leaf spring part to the bearing in the axial direction. Thus, there is no need to separately arrange a preload application member inside the flexible external gear, and the axial length of the hollow strain wave gearing unit can be shortened.
Abstract:
A wave generator of a strain wave gearing has a rigid plug and a needle roller bearing mounted on the plug external peripheral surface. The plug external peripheral surface has a retainer engaging part for engaging with a retainer that would move in an axis line direction and for restricting the movement thereof along the axis line direction. The retainer has an outer ring engaging part for engaging with an outer ring that would move in the axis line direction and for restricting the movement thereof along the axis line direction. The movements of the retainer and the outer ring can be restricted without providing a separate member. A wave generator of a strain way gearing can be realized, which is provided with a roller bearing capable of restricting the movement of the outer ring with a simple structure.