Abstract:
Systems and methods for sideband heterodyning detection are provided. In certain embodiments a system includes an optical resonator configured to allow light to resonate therein; at least one light source that is controlled to form multiple optical fields, wherein each field is phase or frequency modulated at a common modulation frequency and is at a different frequency. The system also comprises multiple heterodyne modulators that phase or frequency modulate a respective field in the multiple fields at a respective heterodyne frequency to form multiple sidebands, wherein the corresponding heterodyne frequency is different for each heterodyne modulator; at least one coupler that couples the multiple sidebands into the optical resonator; and a feedback control that is configured to detect the multiple sidebands transmitted out of the resonator to create multiple detected sideband signals and adjust frequencies of the plurality of fields based on the multiple detected sideband signals.
Abstract:
In one embodiment a system including a resonator fiber-optic gyroscope configured to measure rotation rate is provided. The resonator fiber-optic gyroscope includes a sensing resonator have a first resonance frequency for a first laser beam propagation direction and a second resonance frequency for a second laser beam propagation direction, an optical mixer coupled to an output of the sensing resonator and configured to mix an output of the sensing resonator with a reference laser, wherein the optical mixer outputs a beat signal, and a resonance tracking electronics coupled to the optical mixer. The resonance tracking electronics are configured to demodulate the beat signal at a frequency offset to produce first in-phase and quadrature demodulated information, generate R-squared information from a sum of squares of the first in-phase and quadrature demodulated information, and demodulate the R-squared information at a resonance tracking modulation frequency.
Abstract:
A resonator fiber optic gyroscope (RFOG) is provided. The RFOG includes a gyroscope resonator having a clockwise input port and a counter-clockwise input port; a first laser configured to couple a clockwise optical beam into to the clockwise input port; a clockwise Pound-Drever-Hall modulation generator to modulate the clockwise optical beam with a resonance tracking modulation before the clockwise optical beam is coupled into the clockwise input port; bias correction electronics; FSR-detection-and-servo electronics including a switch communicatively coupled to the clockwise Pound-Drever-Hall modulation generator; a clockwise transmission detector configured to receive an optical beam output from the counter-clockwise input port and output signals to the bias correction electronics and the FSR-detection-and-servo electronics; and a second laser configured to couple a counter-clockwise optical beam into to the counter-clockwise input port, wherein the FSR of the gyroscope resonator is measured based on the Pound-Drever-Hall modulation of the clockwise optical beam.
Abstract:
In an example, a chip-scale atomic clock physics package is provided. The physics package includes a body defining a cavity having a base surface and one or more side walls. The cavity includes a first step surface and a second step surface defined in the one or more side walls. A first scaffold mounted to the base surface in the cavity. One or more spacers defining an aperture therethrough are mounted to the second step surface in the cavity. A second scaffold is mounted to a first surface of the one or more spacers spans across the aperture of the one or more spacers. A third scaffold is mounted to a second surface of the one or more spacers in the cavity and spans across the aperture of the one or more spacers. Other components of the physics package are mounted to the first, second, and third scaffold.
Abstract:
An apparatus for inertial sensing is provided. The apparatus comprises at least one atomic inertial sensor, and one or more micro-electrical-mechanical systems (MEMS) inertial sensors operatively coupled to the atomic inertial sensor. The atomic inertial sensor and the MEMS inertial sensors operatively communicate with each other in a closed feedback loop.