摘要:
A light source emitting a light flux; a coupling optical system couples the light flux from the light source to a subsequent optical system by transforming it into a parallel light flux, an approximately convergent light flux or an approximately divergent light flux; a light deflector reflects the light flux from the coupling optical system with a deflection reflective surface, and deflects it; a scanning and imaging optical system condenses the deflected light flux from the light deflector onto a surface to be scanned as a beam spot; and a correcting optical system is provided for self correcting shift of focal position of the beam spot on the surface to be scanned occurring due to environmental change or the like. The correcting optical system comprises at least one pair of a resin-made lens having an anamorphic surface having a negative power in each of main scanning direction and sub-scanning direction and a glass-made lens having an anamorphic surface having a positive power at least in sub-scanning direction, and is disposed between the coupling optical system and deflection reflective surface.
摘要:
In an optical scanning device and image forming apparatus according to the present invention, a light source emits a light beam, and a scanning optical unit deflects the light beam from the light source and focuses the deflected light beam to form a light spot on a scanned surface, the scanned surface being scanned by the light beam from the scanning optical unit. A temperature detection unit detects a temperature of the scanning optical unit and its neighboring locations. A temperature compensation unit adjusts a focal-point position of the light beam on the scanned surface in accordance with a change in the temperature detected by the temperature detection unit, the temperature compensation unit adjusting the focal-point position of the light beam by directly varying a focusing effect of a corrector lens on the light beam from the light source by a controlled amount of movement of the corrector lens along its optical axis that corresponds to the temperature change.
摘要:
In a multi-beam scanning device and method of the present invention, a semiconductor laser array having a plurality of light emitting parts emitting multiple laser beams is provided. A rotary deflector deflects the laser beams emitted by the light emitting parts of the semiconductor laser array. The deflected laser beams from the rotary deflector is focused onto a scanned surface to form a plurality of beam spots that are separated on the scanned surface in a sub-scanning direction, the scanned surface being scanned simultaneously with the plurality of beam spots in a main scanning direction by a rotation of the rotary deflector. The laser array is configured such that the light emitting parts are arrayed along a line that is at an inclination angle &phgr; to the sub-scanning direction, the inclination angle &phgr; measured in degrees and meeting the conditions 0≦&phgr;
摘要:
An image display apparatus and a vehicle provided with the image display apparatus. The image display apparatus includes a light source unit to emit a laser beam, an optical deflector to deflect the laser beam two-dimensionally, and an intermediate image generator to perform two-dimensional scanning twice in a main scanning direction and a sub-scanning direction with the laser beam deflected by the optical deflector to generate an intermediate image of one frame, where the laser beam deflected by the optical deflector draws two scanning lines. In the image display apparatus, the two scanning lines have two different phases for the two-dimensional scanning for a first time and the two-dimensional scanning for a second time, respectively. In the image display apparatus, the two scanning lines have two different starting points for the two-dimensional scanning for a first time and the two-dimensional scanning for a second time, respectively.
摘要:
A zoom lens includes, in order from an object side in an optical axis a first lens group having a positive refractive power, a second lens group having a negative refractive power; a third lens group having a negative refractive power, a fourth lens group having a positive refractive power, a fifth lens group having a positive refractive power, and an aperture stop arranged between the third lens group and the fourth lens group, an interval between the first lens group and the second lens group being increased, an interval between the second lens group and the third lens group being varied, an interval between the third lens group and the fourth lens group being decreased, and an interval between the fourth lens group and the fifth lens group being decreased when changing a magnification from a wide-angle end to a telephoto end.
摘要:
A zoom lens includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power, which are disposed in order from an object side, and an aperture stop disposed at an object side of the third lens group. When changing the magnification from a wide angle end to a telephoto end, an interval between the first and second lens groups increases, an interval between the second and third lens groups decreases, and an interval between the third and fourth lens groups increases. The first lens group includes a negative lens, a positive lens, and a positive lens, in order from the object side. Predetermined conditions of a refractive index of the negative lens E1 for a d line, an Abbe number for d line, and a relative partial dispersion are satisfied.
摘要:
A zoom lens includes, in order along an optical axis from a side nearest to a photographic subject to an imaging site, a first lens group I that comprises a positive refraction index and is anchored in place when performing a magnification of an image, a second lens group II that comprises a negative refraction index, a third lens group III that comprises a positive refraction index, a fourth lens group IV that comprises a positive refraction index, a fifth lens group V that comprises a negative refraction index, and a sixth lens group VI that comprises a positive refraction index, wherein, when magnifying from a wide angle end to a telephoto end, the magnification thereof is performed by moving the second lens group II, the fourth lens group IV, and the fifth lens group V, at a minimum, the first lens group I comprises a reflective optical element, which is for refracting a light path therein, an additional lens group VII, comprising a negative refraction index, is interposed between the lens groups of the zoom lens as an additional lens group thereof, at a minimum, and a magnification to a long focal distance that is even longer than the telephoto end is performed thereby.
摘要:
A zoom lens includes, in order along an optical axis from a side nearest to a photographic subject to an imaging site, a first lens group I that comprises a positive refraction index and is anchored in place when performing a magnification of an image, a second lens group II that comprises a negative refraction index, a third lens group III that comprises a positive refraction index, a fourth lens group IV that comprises a positive refraction index, a fifth lens group V that comprises a negative refraction index, and a sixth lens group VI that comprises a positive refraction index, wherein, when magnifying from a wide angle end to a telephoto end, the magnification thereof is performed by moving the second lens group II, the fourth lens group IV, and the fifth lens group V, at a minimum, the first lens group I comprises a reflective optical element, which is for refracting a light path therein, an additional lens group VII, comprising a negative refraction index, is interposed between the lens groups of the zoom lens as an additional lens group thereof, at a minimum, and a magnification to a long focal distance that is even longer than the telephoto end is performed thereby.
摘要:
A holding mechanism for a long length optical element, which extends in a main scanning direction that is a movement direction of a deflected luminous flux by an optical deflector, and leads the deflected luminous flux to a scanned surface, includes; a holding member which is placed in a sub-scanning direction orthogonal to the main scanning direction and holds the long length optical element in at least two places. The holding member has, an adjusting section which deflects the long length optical element in the sub-scanning direction and controls a tilt of the long length optical element in a sub-scanning cross-section and/or occurrences of a tilt distribution in a longitudinal direction in the sub-scanning cross-section.
摘要:
An optical scanner includes a light source, an optical coupler, an optical line image unit, a deflector, and an optical scanning unit. The optical scanning unit includes scanning lenses that guide the beams to a surface to be scanned. A surface on the deflector side of the scanning lens closest to a deflection reflecting surface has a negative power in a vertical scanning direction, and is a special toric surface in which a radius of curvature in a vertical scanning changes from an optical axis of the lens surface toward a periphery of the horizontal scanning direction. An F number of the beams toward the surface to be scanned of the scanning lens in the vertical scanning direction is larger in a peripheral part than in a central part in an effective scanning width.