Abstract:
A decoding method of an MPE-FEC (MultiProtocol Encapsulation-Forward Error Correction) RS (Reed-Solomon) decoder, includes: substituting a value corresponding to an erasure error position with 0 in a reception signal; calculating a syndrome by using the reception signal; calculating an erasure position polynomial by using erasure information; calculating a modified syndrome by using the syndrome and the erasure position polynomial; calculating an erasure error size polynomial by using the modified syndrome; calculating an error position by using the erasure position polynomial; calculating an error size by using a modified Forney's algorithm; and correcting an error through the error position and the error size.
Abstract:
The present invention relates to a system and method of reusing radio resources capable of improving radio resource efficiency. According to an embodiment of the present invention, in a communication system including a repeater that retransmits signals transmitted from a satellite to user terminals, it is possible to reuse some of the radio resources used in a wide area coverage, such as the satellite, in a repeater coverage. Therefore, it is possible to ensure radio resources such that repeater data can be transmitted to user terminals without additional radio resources.
Abstract:
Provided are a satellite VSAT apparatus and a control method thereof. The satellite VSAT apparatus according to an exemplary embodiment of the present invention can switch a modulation type of a signal to be transmitted from an indoor unit (IDU) to the outdoor unit to a linear or non-linear type in a case in which outputting of a transmitted signal is not controlled to an outdoor unit due to limitations, that is, there is no function such as an automatic signal level control in a block up-converter (BUC), a case in which transmission output limitation is large due to a lot of interference requirements for an adjacent channel, a case in which the number of adjacent channels (carriers) is large, or a case in which adjacent channel interference is large due to a frequency in a satellite multi-beam environment and polarization reuse, in a satellite VSAT apparatus system which aims at a low-priced user terminal.
Abstract:
An image data encoding/decoding apparatus and method using sampling is provided. The image data encoding apparatus may compress image data, pre-processed for each block, after sampling or without sampling, and select a more efficient compression mode from results of the compressing. The image data decoding apparatus may determine a decompression mode corresponding to the selected compression mode, and up-sample the image data after decompressing the image data based on a decompression mode, or decompress the image data without sampling, to provide high definition regardless of a type of image data.
Abstract:
Disclosed relates to a microstrip antenna, particularly, relates to a dual band microstrip antenna including two slots. The microstrip antenna includes a conductor plate having a first hole and a substrate having a microstrip patch where slots of two different sizes are positioned, the substrate being located on a top of the conductor plate.
Abstract:
The present invention relates to a communication method in a mobile communication system. An exemplary embodiment of the present invention provides a mobile satellite communication system having a complementary terrestrial component among various mobile communication systems. The mobile satellite communication system can simultaneously provide a communication service and a broadcasting service to a terminal according to integration between communication and broadcasting. Different signal transmission methods are used between the complementary terrestrial component and a satellite. Specifically, a time division duplex method and a frequency division duplex method are used together and resources are allocated. As a result, system throughput can be increased, and local broadcasting contents can be effectively transmitted to the terminal.
Abstract:
A receiver circuit of a satellite digital video broadcast system includes: a multiplication unit outputting a synchronized reception symbol by multiplying a reception symbol by frequency error information as a feedback; a common autocorrelation unit acquiring autocorrelation values for each symbol by multiplying the synchronized reception symbol by an autocorrelation coefficient; a frame synchronization unit detecting a SOF (Start Of Frame), which is a synchronization word indicating start of a frame, from the autocorrelation values for each symbol; a frequency synchronization unit estimating the frequency error information based on the autocorrelation values for each reception symbol and the SOF; and an SNR estimation unit estimating an SNR (Signal to Noise Ratio) based on the autocorrelation values for each symbol and the SOF.
Abstract:
Provided is a communication method of a mobile terminal in an orthogonal frequency division multiplexing (OFDM) based multi-beam satellite system reusing the same frequency band for all the beams, the method including: receiving location information of the mobile terminal from a satellite to determine a location of the mobile terminal within multiple beams; determining a subcarrier group for a communication with the satellite according to the location of the mobile terminal within the multiple beams; and communicating with the satellite using the subcarrier group for the communication with the satellite.
Abstract:
A dynamic resource allocation apparatus and method for assigning timeslot in a return channel in multi-frequency time division multiple access MF-TDMA in order to have a maximum throughput is disclosed. The apparatus includes: resource request amount collection unit for accumulating a requested resource amount corresponding to each of terminals during a super-frame period; resource request amount processing unit for dividing an accumulated requested resource amount by the number of frame pairs in a super frame and storing a sum of a result of dividing and rounding up a remain of the division to a nearest integer as a request amount of each corresponding terminal; and resource allocation unit for deciding a time slot allocated at each of terminals corresponding to a frame pair based on optimal allocation amount, which is decided based on the request amount by the requested amount processing unit.
Abstract:
A switching device in a digital unit of a multi-sector base station, which uses switching elements incorporated in the digital unit and adapted to switch 3 sectors into multiple sectors, thereby being capable of implementing a multi-sector base station system allowing a softer handoff among all sectors. The switching elements are adapted to support the switching of the next channel element stage in the digital unit included in the existing 3-sector base station to implement a base station system, thereby allowing all handoff between sectors to be conducted in a softer handoff fashion while allowing all channel elements to be set for all sectors covered by the base station upon setting a traffic channel, thereby achieving an efficient allocation of channel elements. In accordance with the present invention, a 6-sector base station system is efficiently implemented in accordance with the setting of a timing capable of supporting an addition of switching elements, an operation of switching elements upon setting pilot, sync, and access channels, and an operation of switching elements upon a handoff and call setting. Since one digital unit can support 6 sectors, the overall configuration of the multi-sector base station system can be simplified and easily made.