Abstract:
An exemplary electronic device includes a casing with a slot defined in an outer face of the casing, a through holed defined in the slot, and a switch module. The switch module includes a switch received in the casing, and a slidable button embedded in the slot. The slidable button includes an operating portion received in the slot and abutting an outer face of the casing, a holding portion extending outwardly from the operating portion and through the through hole, and two elastic arms respectively extending outwardly from two lateral sides of the holding portion. Each elastic arm includes a connecting section extending outwardly from the holding portion and a locking section protruding outwardly from the connecting section towards the operating portion. The locking sections of the elastic arms abut an inner face of the casing, whereby the slidable button is fixed to the casing.
Abstract:
A method is disclosed. The method includes receiving color data for an object to be printed and performing post color processing for each pixel in the object if the object is a graphics/text object, while no processing is performed if the object is an image object. Post color processing is performed by determining if a pixel is black or gray and converting the pixel to K only black color if the pixel is black or gray.
Abstract:
An electronic device includes an EMI shielding board, two electronic components and a flat cable. The EMI shielding board includes a first side and a second side opposite to the first side. The two electronic components are arranged at the first side of the EMI shielding board. The flat cable is connected between the two electronic components. The EMI shielding board further includes a first through slot and a second through slot both configured therein. The flat cable passes through the EMI shielding board via the first and second through slots. A part of the flat cable is on the first side of the EMI shielding board, and the remaining part of the flat cable is on the second side of the EMI shielding board.
Abstract:
An exemplary electronic device includes a shell, a mother board and a metal sheet disposed at an inner side of the shell, an electronic apparatus fixed on the mother board, and a heat conducting plate thermally connecting the electronic apparatus with the metal sheet. The metal sheet is located between the shell and the mother board to shield electro magnetic interference from the electronic apparatus. The electronic apparatus generates heat when working. The electronic apparatus is located between the mother board and the metal sheet, and is spaced from the metal sheet.
Abstract:
An exemplary electronic device includes a cover, a motherboard and a driving module both disposed at an inner side of the cover, an electronic component fixed on the motherboard, and a fan duct mounted on the motherboard and covering the electronic component. The driving module has a rotating shaft for supportively driving an optical disk rotating. The fan duct guides hot air therein toward the driving module.
Abstract:
Machine-readable media, methods, apparatus and system for a community-based trust are provided. In an embodiment, it may be determined whether a requesting node obtains a trust from a targeting node through an endorsement from an intermediate node. If the requesting node obtains the trust through the endorsement from the intermediate node, an intermediate trust level that indicates how much the targeting node trusts the intermediate node may be obtained; and a new trust level that indicates how much the targeting node trusts the requesting node may be calculated based upon the intermediate trust level.
Abstract:
A method for data transmission includes: a router receives a data packet sent by an access device of a first user, where the data packet carries target device selection information including at least a user identity of a second user, and the user identity is associated with at least one access device of the second user; the router obtains a routing address of an optimal access device among access devices associated with the user identity; and the router sends the data packet to the optimal access device according to the routing address.
Abstract:
A method for forwarding a packet may include generating, by a first hash function module, a first hash value based on data included within the packet. The method may also include generating, by a second hash function module, a second hash value based on data included within the packet. The method may additionally include determining, by a first hash region integral to a memory and associated with the first hash function module, whether an index location of the first hash region corresponding to the first hash value includes an entry. Moreover, the method may include determining, by a second hash region integral to a memory and associated with the second hash function module, whether an index location of the second hash region corresponding to the second hash includes an entry. The method may further include, in response to a determination that at least one of the index location of the first hash region corresponding to the first hash value and the index location of the second hash region corresponding to the second hash value includes an entry, forwarding the packet based on forwarding information included within the entry.
Abstract:
In one embodiment, a method for telecommunications includes steps of receiving a first packet through a first port, and determining whether the first packet arrived over a protected path. If the first packet arrived over a protected path, the method also includes the steps of hashing a source address of the first packet, adding a first entry into a forwarding table, and adding a second entry into the forwarding table. The protected path is coupled to at least the first port and a second port. The first entry includes the result of hashing the packet, and an identification of the first port. The second entry includes the result of hashing the packet, and an identification of the second port.
Abstract:
An optical disk drive includes a main body defining a receiving space and a pivotable cover. A latching mechanism that contacts the cover at two points distributes stresses better than where the latching mechanism only contacts the cover at one point.