摘要:
The invention relates to automatically commissioning of devices of a networked control system, particularly to automatically commissioning (auto-commissioning) of light sources of a lighting system, where a control of light sources on an individual and local basis is required. A basic idea of the invention is to route commissioning messages through a grid, particularly an approximately rectangular grid of devices in that each device is able to receive commissioning messages from and to transmit commissioning messages to directly neighbored devices in the grid via light. An embodiment of the invention relates to a method for automatically commissioning of devices (10, 12, 14, 16, 18) of a networked control system, which comprises several devices arranged in a grid (20), wherein each device is adapted for routing messages, which were received from directly neighbored devices in the grid, to directly neighbored devices in the grid via light, wherein the commissioning comprises the acts of transmitting a commissioning message (S10), which comprises a hops counter, by a first device (10) to a second device (12), which is neighbored to the first device in a predetermined direction (22) in the grid, receiving the commissioning message (S12) from the first device by the second device, updating the hops counter (S14) by the second device and a location counter of the second device and transmitting the commissioning message (S16) with the updated hops counter to one or more third devices.
摘要:
The present invention relates to light-based communication, and more particularly it relates to methods for configuration of at least one remote light-sensing device, to a central light-emitting unit and to a light-sensing device. According to the invention, spatial configuration of remote light-sensing devices (e.g. peripherals such as loudspeakers or light devices), will be achieved by transmission of embedded identifiers or configuration information in light emitted in a plurality of directions from a central light-emitting unit. With a different identifier or different configuration information for each direction of transmission, the directions can be distinguished from each other. The invention enables a user to place remote light-sensing devices in a desired spatial position and the central light-emitting unit will be able to determine location and spatial function, i.e. for example whether the peripheral is an audio device and/or a lighting device. As a result, the peripherals will be correctly configured without any user interaction required.
摘要:
The present invention relates to light-based communication, and more particularly it relates to methods for configuration of at least one remote light-sensing device, to a central light-emitting unit and to a light-sensing device. According to the invention, spatial configuration of remote light-sensing devices (e.g. peripherals such as loudspeakers or light devices), will be achieved by transmission of embedded identifiers or configuration information in light emitted in a plurality of directions from a central light-emitting unit. With a different identifier or different configuration information for each direction of transmission, the directions can be distinguished from each other. The invention enables a user to place remote light-sensing devices in a desired spatial position and the central light-emitting unit will be able to determine location and spatial function, i.e. for example whether the peripheral is an audio device and/or a lighting device. As a result, the peripherals will be correctly configured without any user interaction required.
摘要:
For improving application data traffic in a communications network, data traffic of at least one application of the communications network is divided into two types in view of the current situation of the network—a first type comprising data, which can be transmitted by delaying the transmission, and a second type comprising data, which should not be delayed but should be transmitted at the current time. When an analysis of the current (average) load of the network shows that transmitting both types of data could lead to a heavy data traffic, a temporal transmission suppression session can be performed with regard to at least one entity of the communications network. In the temporal transmission suppression session, transmitting of data of the first type is interrupted during transmitting data of the second type. After completion of transmitting data of the second type, transmitting data of the first type is resumed.
摘要:
There is provided a method for advanced configuration and initialization of a luminaire system. The luminaire system comprises one or more lighting devices (102), an apparatus (104) and a user interface (106). The apparatus comprises a light sensor. One or more of the lighting devices are not connected to a central controller by means of a wired/wireless connection. Therefore, techniques and procedures to use manual interaction by an operator (114) to control these lighting devices are proposed. The proposed techniques enable backward compatible and low-cost implementations of advanced luminaire initialization and configuration. Moreover, this invention proposes to combine the user input, sensing and control functionality into one device, thereby reducing the total cost of implementation and ownership of the proposed system. A corresponding system and apparatus are also presented.
摘要:
The invention relates to a detection system for determining whether a light contribution of a light source is present at a selected position within a 2D scene. The light contribution includes an embedded code comprising a repeating sequence of N symbols. The detection system includes a camera and a processing unit. The camera is configured to acquire a series of images of the scene via specific open/closure patterns of the shutter. Each image includes a plurality of pixels, each pixel representing an intensity of the light output of the light source at a different physical position within the scene. The processing unit is configured to process the acquired series of images to determine whether the light contribution of the first light source is present at the selected physical position within the scene by e.g. correlating a sequence of pixels of the acquired series corresponding to the selected physical position with the first sequence of N symbols.
摘要:
Commissioning a coded light source in a lighting system is accomplished by using a remote controller. When an identification of a light source is successful, a control message is sent to that light source to at least partly switch off its light emission. Thus the light contribution of the identified light source is suppressed. Thereby the chance of coded light from an already identified light source colliding with identifiers comprised in coded light emitted by other light sources is reduced. When no more coded light is detectable, a sensitivity of the remote controller can be increased until coded light again is detectable. Further light sources can then be identified and commissioned.
摘要:
A vehicle position measurement system (100) and method to determine the (relative) position of a vehicle (110) and an object (120) are proposed. The system comprises at least two light sources (131, 132) capable of emitting light and positioned at a predetermined distance (140) to each other. Furthermore the system comprises at least one detector (150/151, 152) capable of measuring the light emitted. The light emitted by the light sources comprises synchronized light source identification codes. The detector is arranged to determine the position of the vehicle (110) and object (120) on the basis of a phase-difference measurement between the light originating from the individual light sources (131, 132) and a comparison phase. The vehicle (110) may comprise the at least two light sources (131, 132) and the detector (151, 152), while the phase-difference is measured between light reflected from the object (120) and the comparison phase. Alternatively, the vehicle (110) may comprise the at least two light sources (131, 132) while the object (120) comprises the detector (150) and the detector is arranged to obtain the comparison phase from the light received from one of the light sources (131, 132). The object may be a vehicle.
摘要:
The present invention relates to a method and a device for controlling a physical property of light emitted from a light source. In particular, the invention can be applied to a lighting system for atmosphere creation. The measurements needed for feedback control are made at a portable user device comprising a planar photodetector. More or less all industrially available photodetectors are of the planar type, but planarity is in fact a necessary feature to achieve faithful relative measurements. Since the user device is portable, variations in the orientation of the photodetector can introduce large and unpredictable measurement errors, making effective control of the light source impossible. According to one embodiment of the invention, the orientation-dependent errors are eliminated by measuring the actual orientation of the photodetector and processing the detection signal appropriately. According to a second embodiment, the photodetector is movably mounted in the user device in order to retain its preferred orientation irrespective of the orientation of the user device. In a third embodiment, the emitted light is monitored by a plurality of photodetectors; knowing the actual orientation of the user device, the control device can give priority to the measurements coming from the best oriented photodetector at every instant.
摘要:
The invention relates to a method of monitoring a vital parameter of a patient by measuringattenuation of light emitted onto tissue of the patient, comprising the following steps: modulating the light with a modulation frequency or/and a modulation code; emitting the modulated light onto the tissue of the patient; collecting lightwhich is transmitted through the tissue or/and which is reflected from the tissue; demodulating the collected light; analyzing the demodulated collected light with regard to interference with ambient light; determining amodulation frequency or/and a modulation code for which interference with the ambient light is minimized or falls under a predefined threshold; and setting the modulation frequency or/and the modulation code for modulating the light according to the determined modulation frequency or/and a modulation code for which interference with the ambient light is minimized or falls under a predefined threshold. In this way a versatile and reliable possibility of monitoring a vital parameter of a patient with a high signal-to-interference ratio is provided.