Abstract:
A method of fabricating a dynamic random access memory cell is provided. A substrate having a patterned mask layer thereon and a deep trench therein is provided. The patterned mask layer exposes the deep trench. A deep trench capacitor is formed inside the deep trench. Thereafter, a trench is formed in the substrate on one side of the deep trench capacitor. The trench exposes a portion of the upper electrode of the deep trench capacitor and a portion of the substrate. After that, a semiconductor strip is formed in the trench. A gate dielectric layer is formed over the substrate to cover the exposed semiconductor strip and the substrate. A gate is formed over the gate dielectric layer such that the gate and the semiconductor strip crosses over each other, and the gate-covered portion of the semiconductor strip serves as a channel region.
Abstract:
A method of forming a multilayer electrode capacitor is described. A trench is formed in a substrate or in an insulator layer. Two sets of conductive layers are deposited on the inner surface of the trench. The first set of conductive layers is electrically connected to each other, and so is the second set of conductive layers. Each of the second set of conductive layers is inserted between two first conductive layers, and dielectric layers are interposed between two conductive layers to form a multilayer electrode capacitor.
Abstract:
A method of forming a semiconductor device with a polysilicon layer having a multi-layer tungsten-silicide (WSix) film formed on a surface thereof includes the steps of (1) forming a first layer of tungsten-silicide on the surface of the polysilicon layer; (2) forming a second layer of a material selected from tungsten and silicon on the first layer; (3) forming a third layer of tungsten-silicide on the second layer; and (4) thermally treating the multi-layer film resulting from steps (a)-(c) to form a multi-layer WSix film on the surface of the polysilicon layer, the multi-layer WSix film having a uniform small grain size. In various embodiments, steps (1)-(3) may be repeated one or more times. A semiconductor device includes a semiconductor body having a polysilicon layer formed on a surface thereof and a multilayered WSix film formed on a surface of the polysilicon layer by the process described above.
Abstract:
A sputter cleaning system and method are described which provide improved temperature control of the pedestal and thus of a substrate being sputter cleaned. The sputter cleaning system comprises a conducting metal pedestal to provide a conducting surface beneath a substrate being sputter processed. A cooling channel is formed in the metal pedestal. In one example the cooling channel typically is made up of a number of concentric, interconnected, circular cooling sub-channels. Other shape cooling channels, such as radial, can also be used. An inlet tube delivers a cooling liquid, such as water, to the cooling channel and an exhaust tube removes the cooling liquid from the cooling channel thereby removing heat from the pedestal. The cooling liquid removes heat from the pedestal, thereby controlling the temperature of the pedestal and the substrate undergoing sputter cleaning.
Abstract:
A mass flow controller (MFC) for controlling the fluid flow in a conduit is configured to include a flow command input for issuing a flow control command, a control unit accepting the flow control command for generating a control signal, a flow-sensing device including a plurality of temperature sensors, a sensor circuit and an amplifier, an actuator being driven by the control unit, and a valve member including a valve being adjusted by the actuator for controlling the fluid flow in the conduit, a distortion controller being distorted in response to the control signal, and an elastic body being distorted in response to an external force resulting from the distortion of the distortion controller for changing the orifice size in the conduit. In addition, the valve can be designed to be fixed instead of being mobile so as to reduce the occurrence of particles resulting from the mutual frictions emerging among the moving parts employed in the valve member.