Abstract:
A method of making planar-type bottom electrode for semiconductor device is disclosed. A sacrificial layer structure is formed on a substrate. Multiple first trenches are defined in the sacrificial layer structure, wherein those first trenches are arranged in a first direction. The first trenches are filled with insulating material to form an insulating layer in each first trench. Multiple second trenches are defined in the sacrificial layer structure between the insulating layers, and are arranged in a second direction such that the second trenches intersect the first trenches. The second trenches are filled with bottom electrode material to form a bottom electrode layer in each second trench. The insulating layers separate respectively the bottom electrode layers apart from each other. Lastly, removing the sacrificial layer structure defines a receiving space by two adjacent insulating layers and two adjacent bottom electrode layers.
Abstract:
An apparatus for the rapid thermal processing of a semiconductor wafer is disclosed. The apparatus includes a preheat unit for preheating a gas composition, and a RTP reactor having a processing chamber and a heat source for heating the wafer. The processing chamber has a wafer holder, and a gas inlet and a gas outlet through which the preheated gas composition flows in and out of the processing chamber.
Abstract:
A method for reducing stress between a conductive layer and a mask layer is provided. The method for reducing stress comprises a step of performing a plasma treatment with a nitrogen-containing gas to modify a surface of the conductive layer prior to the formation of the mask layer upon the surface. The method is useful for the manufacture of a gate, and the method for manufacturing the gate comprises the steps of providing a substrate; and sequentially depositing an oxide layer, a conductive layer, and a mask layer on the substrate to form a gate stack structure. The conductive layer is subjected to a surface plasma treatment with a nitrogen-containing gas prior to depositing the mask layer to modify its surface.
Abstract:
A vertical-type surrounding gate semiconductor device is described. The semiconductor device comprises a pillar substrate, a collar oxide layer, a metal layer, a drain region, a ground line, a source region, a bit line, a word line, a gate and a gate dielectric layer. The ground line is formed in an opening of the pillar substrate and electrically connected to the pillar substrate, and covers the collar oxide layer and the metal layer. The drain region is formed on the top of the pillar substrate and in the upper portion of the opening. The gate is formed among the word line, the bit line and the pillar substrate. The gate dielectric layer is formed among the gate, the source region, the drain region, the bit line and the pillar substrate.
Abstract:
A method of fabricating a dynamic random access memory cell is provided. A substrate having a patterned mask layer thereon and a deep trench therein is provided. The patterned mask layer exposes the deep trench. A deep trench capacitor is formed inside the deep trench. Thereafter, a trench is formed in the substrate on one side of the deep trench capacitor. The trench exposes a portion of the upper electrode of the deep trench capacitor and a portion of the substrate. After that, a semiconductor strip is formed in the trench. A gate dielectric layer is formed over the substrate to cover the exposed semiconductor strip and the substrate. A gate is formed over the gate dielectric layer such that the gate and the semiconductor strip crosses over each other, and the gate-covered portion of the semiconductor strip serves as a channel region.
Abstract:
A method of making planar-type bottom electrode for semiconductor device is disclosed. A sacrificial layer structure is formed on a substrate. Multiple first trenches are defined in the sacrificial layer structure, wherein those first trenches are arranged in a first direction. The first trenches are filled with insulating material to form an insulating layer in each first trench. Multiple second trenches are defined in the sacrificial layer structure between the insulating layers, and are arranged in a second direction such that the second trenches intersect the first trenches. The second trenches are filled with bottom electrode material to form a bottom electrode layer in each second trench. The insulating layers separate respectively the bottom electrode layers apart from each other. Lastly, removing the sacrificial layer structure defines a receiving space by two adjacent insulating layers and two adjacent bottom electrode layers.
Abstract:
A method for improving atomic layer deposition (ALD) performance and an apparatus thereof are disclosed. The apparatus alternates the process temperature of the different ALD steps rapidly, and the process temperature of each step is determined in accordance with the specific precursor and the substrate surface used. In case a higher process temperature is needed, a plurality of heating units of the apparatus increases and keeps the temperature of the deposited substrate to complete surface reaction. When the lower process temperature is needful for the next ALD step, the heating units are turned off to reduce the temperature of the deposited substrate and a gas flow puffed to the heater and the deposited substrate to assist in temperature cooling.
Abstract:
A capacitance structure of a semiconductor device and a method for manufacturing the structure are provided. The capacitance structure comprises a plurality of capacitance elements and a plurality of supports. Each of the capacitance elements has a column, and each of the supports is disposed between two adjacent columns by partially connecting onto the outer surface of each of the two adjacent columns. Thereby, the mechanical properties of the capacitance structure can be enhanced.
Abstract:
A gas delivering system for an in situ thermal treatment, a thin film deposition and a use of the same are provided. The gas delivering system integrates a thermal treatment system therein so that a thin film deposition and a by rapid thermal annealing can be performed alternatively on a wafer in a reaction chamber. Accordingly, the density of the thin film can be improved and the thermal budget of the process can be reduced.
Abstract:
A method of forming a multilayer electrode capacitor is described. A trench is formed in a substrate or in an insulator layer. Two sets of conductive layers are deposited on the inner surface of the trench. The first set of conductive layers is electrically connected to each other, and so is the second set of conductive layers. Each of the second set of conductive layers is inserted between two first conductive layers, and dielectric layers are interposed between two conductive layers to form a multilayer electrode capacitor.