Abstract:
A printed circuit board antenna includes a printed circuit board and a feedpoint that is disposed on the printed circuit board. A copper coating is disposed on the printed circuit board. A split is disposed on the copper coating on the printed circuit board. The split is connected to a board edge of the printed circuit board. A slot perpendicular to the split is disposed on the copper coating on the printed circuit board. The slot is connected to the split. The copper coating at two sides of the split forms a first antenna and a second antenna. The feedpoint is configured to, together with the first antenna and the second antenna, form a first resonance loop and a second resonance loop. Resonance frequencies of the first resonance loop and the second resonance loop are different.
Abstract:
A printed circuit board antenna includes a printed circuit board and a feedpoint that is disposed on the printed circuit board. A copper coating is disposed on the printed circuit board. A split is disposed on the copper coating on the printed circuit board. The split is connected to a board edge of the printed circuit board. A slot perpendicular to the split is disposed on the copper coating on the printed circuit board. The slot is connected to the split. The copper coating at two sides of the split forms a first antenna and a second antenna. The feedpoint is configured to, together with the first antenna and the second antenna, form a first resonance loop and a second resonance loop. Resonance frequencies of the first resonance loop and the second resonance loop are different.
Abstract:
A printed circuit board antenna includes a printed circuit board and a feedpoint that is disposed on the printed circuit board. A copper coating is disposed on the printed circuit board. A split is disposed on the copper coating on the printed circuit board. The split is connected to a board edge of the printed circuit board. A slot perpendicular to the split is disposed on the copper coating on the printed circuit board. The slot is connected to the split. The copper coating at two sides of the split forms a first antenna and a second antenna. The feedpoint is configured to, together with the first antenna and the second antenna, form a first resonance loop and a second resonance loop. Resonance frequencies of the first resonance loop and the second resonance loop are different.
Abstract:
The present invention discloses an antenna and a terminal, which can extend antenna bandwidth. The antenna includes a capacitor component and at least one radiator, where one end of each radiator of the at least one radiator is connected to form a first node, the first node is connected to one end of the capacitor component to form a second node, and the second node is grounded; and the other end of the capacitor component receives a feed signal.
Abstract:
The present disclosure relates to the field of antenna technologies and discloses a feeding matching apparatus of a multiband antenna, a multiband antenna, and a radio communication device to improve a bandwidth and efficiency of a lower frequency band. The feeding matching apparatus of a multiband antenna includes: a grounding portion; a feeding portion connected to a signal source, where a signal of the signal source is input into the feeding portion; and two or more ground cable branches with different lengths, where one end of each ground cable branch is electrically connected to the feeding portion, the other end is electrically connected to the grounding portion, at least one ground cable branch is connected in series to a signal filtering component, and the signal filtering component is capable of preventing a signal lower than a frequency point corresponding to the signal filtering component from passing through it.
Abstract:
A printed circuit board antenna includes a printed circuit board and a feedpoint that is disposed on the printed circuit board. A copper coating is disposed on the printed circuit board. A split is disposed on the copper coating on the printed circuit board. The split is connected to a board edge of the printed circuit board. A slot perpendicular to the split is disposed on the copper coating on the printed circuit board. The slot is connected to the split. The copper coating at two sides of the split forms a first antenna and a second antenna. The feedpoint is configured to, together with the first antenna and the second antenna, form a first resonance loop and a second resonance loop. Resonance frequencies of the first resonance loop and the second resonance loop are different.
Abstract:
A communications terminal includes an antenna Which includes a circuit hoard, a radiator, two feeds, and two coupling structures. The radiator is disposed around an outer edge of the circuit board, and a ring-shape slot is formed between the outer edge of the circuit board and the radiator. A first feed is electrically coupled to a first coupling structure, the first coupling structure is coupled to the radiator along one direction, and a current in a first polarization direction is formed on the circuit board by using the radiator and the ring-shape slot. A second feed is electrically coupled to a second coupling structure, the second coupling structure is coupled to the radiator along another direction, and a current in a second polarization direction is formed on the circuit board by using the radiator and the ring-shape slot. A specific included angle is formed between the above two directions.
Abstract:
An antenna includes a first radiator and a first capacitor structure. A first end of the first radiator is electrically connected to a signal feed end of a printed circuit board by means of the first capacitor structure, and a second end of the first radiator is electrically connected to a ground end of the printed circuit board. The first radiator, the first capacitor structure, the signal feed end, and the ground end form a first antenna configured to produce a first resonance frequency. An electrical length of the first radiator is greater than one eighth of a wavelength corresponding to the first resonance frequency, and the electrical length of the first radiator is less than a quarter of the wavelength corresponding to the first resonance frequency.
Abstract:
An antenna and a terminal are disclosed. In an embodiment an antenna includes a feedpoint disposed on a printed circuit board of a mobile terminal and a metal frame being an outer frame of a mobile terminal, wherein the metal frame has a split, a first ground point and a second ground point, wherein the first ground point and the second ground point are located at two sides of the split, the first ground point and the second ground point being grounded, wherein the metal frame between the feedpoint and the first ground point forms a first resonance loop, and wherein the metal frame between the feedpoint and the second ground point forms a second resonance loop.
Abstract:
An electronic device is disclosed, where the electronic device is provided with a metal frame, the electronic device further includes an antenna feeding point, an antenna ground, a feeding branch, a grounding branch, an antenna resonance arm, a variable capacitor, and a control circuit. The antenna resonance arm is a part of the metal frame after segmentation, the antenna feeding point is disposed on the feeding branch, a first connection portion and a second connection portion are disposed on the antenna resonance arm, the feeding branch is disposed between the second connection portion and the antenna ground, the grounding branch is disposed between the first connection portion and the antenna ground, the variable capacitor is disposed on the feeding branch, the variable capacitor is disposed between the antenna feeding point and the second connection portion, and the control circuit is configured to adjust a capacitance of the variable capacitor.