Abstract:
The present disclosure relates to the field of antenna technologies and discloses a feeding matching apparatus of a multiband antenna, a multiband antenna, and a radio communication device to improve a bandwidth and efficiency of a lower frequency band. The feeding matching apparatus of a multiband antenna includes: a grounding portion; a feeding portion connected to a signal source, where a signal of the signal source is input into the feeding portion; and two or more ground cable branches with different lengths, where one end of each ground cable branch is electrically connected to the feeding portion, the other end is electrically connected to the grounding portion, at least one ground cable branch is connected in series to a signal filtering component, and the signal filtering component is capable of preventing a signal lower than a frequency point corresponding to the signal filtering component from passing through it.
Abstract:
A wireless communications device is provided. A first antenna and a second antenna are disposed on the wireless communications device, where an electrical length of the first antenna is N times an electrical length of the second antenna, where N is an integer greater than or equal to 1. The first antenna and the second antenna are disposed on a printed circuit board by means of common ground connection, that is, ground points of the first antenna and the second antenna are a same ground point, which reduces input impedance at the ground point of the first antenna and the second antenna, so that energy fed from the antennas is evenly distributed in a horizontal direction and a vertical direction of the printed circuit board.
Abstract:
An antenna and a terminal with an antenna are disclosed. The antenna is a strip planar antenna, which includes an intermediate frequency branch, a high frequency branch and a low frequency branch, where the intermediate frequency branch, the high frequency branch and the low frequency branch are independent of one another, the high frequency branch and the low frequency branch encircle the intermediate frequency branch; a feed point connecting line is disposed on the intermediate frequency branch; a first ground point connecting line is disposed on the high frequency branch; a second ground point connecting line is disposed on the low frequency branch, and the feed point connecting line, the first ground point connecting line and the second ground point connecting line are located at the same side of the antenna.
Abstract:
The present invention discloses an antenna structure and ensures an all-metal housing feature of the mobile terminal device. The antenna structure includes a housing and a feed plate, where the housing includes a main housing, a first floating object, a second floating object, and an antenna radiator; and the first floating object, the second floating object, and the antenna radiator are separated from the main housing by a first slot; there is a second slot between the first floating object and one side of the antenna radiator, and a third slot between the second floating object and the other side of the antenna radiator; the main housing, the first floating object, the second floating object, and the antenna radiator are connected as a whole by an insulator; and the feed plate is disposed opposite to the main housing, the first floating object, and the antenna radiator at an interval.
Abstract:
The present disclosure relates to the field of antenna technologies and discloses a feeding matching apparatus of a multiband antenna, a multiband antenna, and a radio communication device to improve a bandwidth and efficiency of a lower frequency band. The feeding matching apparatus of a multiband antenna includes: a grounding portion; a feeding portion connected to a signal source, where a signal of the signal source is input into the feeding portion; and two or more ground cable branches with different lengths, where one end of each ground cable branch is electrically connected to the feeding portion, the other end is electrically connected to the grounding portion, at least one ground cable branch is connected in series to a signal filtering component, and the signal filtering component is capable of preventing a signal lower than a frequency point corresponding to the signal filtering component from passing through it.