Abstract:
A gate driving circuit and a display device having the same, in which the gate lines can be divided into p groups using p shift registers and p-time gate lines can be driven using a signal shifted by 1/p, wherein p is an arbitrary natural number of three or more. Accordingly, since a number of gate lines can be driven using the plurality of shift registers, high-resolution display devices can be manufactured at a low cost.
Abstract:
A method of providing location information in a wireless communication system includes receiving a location information request message, including Location Based Service (LBS) control information, from a Base Station (BS), the LBS control information being information about a condition in which location information is reported, performing LBS measurement, and if the condition is satisfied, transmitting a location information response message, including location information collected through the LBS measurement, to the BS. In accordance with the present invention, in a wireless access system supporting LBS, LBS-related information can be reported irrespective of the state of a User Equipment (UE). In particular, in the case in which a UE is in an idle state, location information can be provided efficiently and rapidly.
Abstract:
A method of transmitting broadcast information by using multiple carriers is provided. The method includes: configuring a superframe for an operation of the multiple carriers; and transmitting the broadcast information through at least one primary carrier selected from the multiple carriers. Accordingly, the multiple carrier system can effectively manage respective carriers, and particularly can effectively use radio resources in transmission of broadcast information.
Abstract:
A method of transmitting data for reducing interference in a hierarchical cell structure including a macro base station (BS) providing multi carriers and a femto BS providing a single carrier includes performing a channel scan within an interfered carrier to acquire channel state information and neighbor femto BS information if interference with the femto BS occurs; transmitting a channel measurement report including the channel state information and the neighbor femto BS information to the macro BS; and transmitting data through a carrier changed by receiving carrier change information from the macro BS.
Abstract:
An organic light emitting diode display device capable of achieving a considerable reduction in power consumption by generating a drive signal only for a period, in which the drive signal is actually required, is disclosed. The organic light emitting diode display device includes a DC-DC converter including a switching element to generate a drive signal by controlling an input voltage under a control of a logic, and a driver to supply, to pixels, the drive signal generated from the DC-DC converter in accordance with a timing. The logic includes an AND circuit to AND a control signal for drive signal generation and an output control signal maintained at a logic-high voltage only for a period in which the drive signal is to be supplied, and to supply a result of the ANDing operation.
Abstract:
Disclosed is a system for transmitting encrypted broadcast signals to different transmitters on a single frequency network (SFN) in a digital broadcasting system. The system for transmitting encrypted broadcast signals on the SFN includes: a main broadcasting system for transmitting encrypted broadcast signals including data streams and transmitter identification information (TII) through a main broadcasting network; a repeating system for amplifying encrypted broadcast signals of the main broadcasting network and transmitting the amplified broadcast signals, or modulating and amplifying streams input by the main broadcasting system through a private line and repeating broadcast signals of the main broadcasting system through a repeating network; and a decrypting key provider for receiving a decrypting key value from the main broadcasting or repeating system and transmitting a user authentication and decrypting key to a charged subscriber terminal through a mobile communication network.
Abstract:
Provided are a beam combining and hybrid beam selection method that can improve digital broadcasting reception performance by combining more than two beam output signals (beam combination type) instead of simply selecting one of beam output signals (beam selection type), or even selecting an optimal method between the beam selection type and the beam combination type, and a digital broadcasting receiving apparatus using the same.
Abstract:
Disclosed are a base station and a mobile terminal for location detection, and a location detecting method. The base station in which a plurality of antennas having RF modules are installed transmits a signal including location information of each of the antennas to the mobile terminal. The mobile terminal carries out location detection by selectively using location information received from a GPS receiver or location information received from a DSRC transceiver. The base station and mobile terminal for location detection can perform location detection with high accuracy using the existing DSRC service. Thus, the base station and mobile terminal can carry out location detection having an error of approximately 10 m in downtown areas or buildings.
Abstract:
In accordance with the present invention, there is provided a high-speed wireless backbone connection, Backbone Connection Facilitator (BCF), to create a wireless home network, which may consist of many short-range wired/wireless networks. BCF dynamically creates concurrent data pipelines to meet the data bandwidth demand to transfer packets from one short-range wired/wireless network to another. BCF employs the newly developed antenna technologies (ex. MIMO, SDMA) to minimize the transmit power, to reduce the interferences, and to support the real time communication.BCF contains the BCF-PHY layer, the BCF-Data-Link-Layer, and the BCF-Network-Layer. The BCF-PHY layer consists of antenna array, a PHY Base Band controller, and a digital beam former. The BCF-Data-Link-Layer provides the MAC functionality. The BCF-Network-Layer assembles the packet, provides the source and destination address, and provides the BCF-PHY beam forming information. The BCF-Network-Layer is also responsible for parsing and assembling the packet payloads for the high-speed backbone connection.