Abstract:
A wireless transmit/receive unit (WTRU) may include one or more antennas and a first transceiver operatively coupled to the antennas. The one or more antennas and the first transceiver may be configured to receive a first signal from a network using zero energy from the WTRU. The one or more antennas and the first transceiver may be further configured to extract energy from the first signal. The first transceiver may be further configured to examine a separation between energy threshold events to decode an energy signature of the first signal. The first transceiver may be further configured to activate a second transceiver operatively coupled to the one or more antennas if the decoded energy signature matches a stored energy signature, wherein the second transceiver is powered by the WTRU. The one or more antennas and the second transceiver may be configured to receive a second signal from the network.
Abstract:
Methods and apparatus for targeted wake-up and frame enhancement for energy harvesting are disclosed. In one embodiment, a method performed by a station (STA) may compromise: receiving, during an energy detection state, a zero energy (ZE) frame from an access point (AP) that indicates a presence of an energy harvesting (EH) window; harvesting energy for a determined time duration during the EH window; and receiving, during an information decoding state, a data portion of the ZE frame based on a current stored energy of the STA being above a first threshold and a signal strength of the received ZE frame being above a second threshold.
Abstract:
A method for use in a Wireless Transmit/Receive Unit (WTRU). The method comprises: receiving, using an active receiver, system information comprising a first system information set, wherein the first system information set is currently valid for the WTRU; storing the system information; deactivating the active receiver and activating a passive receiver; determining whether a difference between a first parameter in the BSSI and a first parameter in the first system information set is greater than a threshold value, wherein on a condition that the difference is greater than the threshold value, reactivating the active receiver to receive a second system information set as a currently valid system information set for the WTRU.
Abstract:
A method for use in a Wireless Transmit/Receive Unit (WTRU). The method comprises: receiving, using an active receiver, system information comprising a first system information set, wherein the first system information set is currently valid for the WTRU; storing the system information; deactivating the active receiver and activating a passive receiver; determining whether a difference between a first parameter in the BSSI and a first parameter in the first system information set is greater than a threshold value, wherein on a condition that the difference is greater than the threshold value, reactivating the active receiver to receive a second system information set as a currently valid system information set for the WTRU.
Abstract:
A wireless transmit/receive unit (WTRU) may include one or more antennas and a first transceiver operatively coupled to the antennas. The one or more antennas and the first transceiver may be configured to receive a first signal from a network using zero energy from the WTRU. The one or more antennas and the first transceiver may be further configured to extract energy from the first signal. The first transceiver may be further configured to examine a separation between energy threshold events to decode an energy signature of the first signal. The first transceiver may be further configured to activate a second transceiver operatively coupled to the one or more antennas if the decoded energy signature matches a stored energy signature, wherein the second transceiver is powered by the WTRU. The one or more antennas and the second transceiver may be configured to receive a second signal from the network.
Abstract:
A wireless transmit/receive unit (WTRU) may include one or more antennas and a first transceiver operatively coupled to the antennas. The one or more antennas and the first transceiver may be configured to receive a first signal from a network using zero energy from the WTRU. The one or more antennas and the first transceiver may be further configured to extract energy from the first signal. The first transceiver may be further configured to examine a separation between energy threshold events to decode an energy signature of the first signal. The first transceiver may be further configured to activate a second transceiver operatively coupled to the one or more antennas if the decoded energy signature matches a stored energy signature, wherein the second transceiver is powered by the WTRU. The one or more antennas and the second transceiver may be configured to receive a second signal from the network.
Abstract:
A wireless transmit/receive unit (WTRU) is described. The WTRU includes a front-end unit (FEU), a signal processing unit (SPU), and a resource management unit (RMU). The FEU receives a radio frequency (RF) signal, generates time-interleaved samples, an includes: a first array of first time-interleaved samplers, a second array of second time-interleaved samplers, and a third array of third time-interleaved samplers. The SPU receives and combines the plurality of time-interleaved samples and generates a signal quality measurement and in-phase and quadrature-phase (IQ) complex samples. The RMU receives the signal quality measurement and allocates FEU resources in conjunction with a front-end unit controller (FEUC) based on the signal quality measurement. The FEUC generates control signals based on the received signal quality measurement from the RMU.
Abstract:
A method for initial timing synchronization for a WTRU to communicate with a network includes receiving an in-channel narrowband synchronization sequence from the network to enable initial coarse timing synchronization, determining coarse timing offset and a range between a beam source of a network transmitter and the WTRU, selecting a wideband sequence for fine timing synchronization using the estimated range, transmitting the selected wideband sequence for fine timing synchronization during an uplink timing occasion, receiving from the network a transmission of the selected wideband sequence for fine timing synchronization, and establishing fine timing synchronization between the WTRU and the network using the selected sequence.
Abstract:
Method and apparatus for a WTRU to harvest energy from uplink signals of other WTRUs in a wireless network are disclosed. In an example, a method includes sending a message indicating resources and capability of energy harvesting (EH) from sets of resources of the plurality of resources; receiving one or more SRS super-sets, each SRS super-set being associated with a group of other WTRUs and at least one set of resources of the plurality of resources; determining a mapping between a receive beam and an SRS super-set; receiving uplink transmission patterns each being associated with an SRS super-set; selecting a receive beam from a set of receive beams based on the received uplink transmission patterns; and harvesting RF energy from uplink transmissions of one or more groups of other WTRUs using at least the selected receive beam and the received uplink transmission patterns.
Abstract:
A method for initial timing synchronization for a WTRU to communicate with a network includes receiving an in-channel narrowband synchronization sequence from the network to enable initial coarse timing synchronization, determining coarse timing offset and a range between a beam source of a network transmitter and the WTRU, selecting a wideband sequence for fine timing synchronization using the estimated range, transmitting the selected wideband sequence for fine timing synchronization during an uplink timing occasion, receiving from the network a transmission of the selected wideband sequence for fine timing synchronization, and establishing fine timing synchronization between the WTRU and the network using the selected sequence.