Abstract:
Disclosed is an apparatus having a detector for an iterative LDPC-coded MIMO-OFDM system, where the detector is configured to use a structured irregular LDPC code in conjunction with a belief propagation algorithm. Also disclosed is an apparatus having a detector for a structured irregular LDPC-coded MIMO-OFDM system, where the detector is configured to use an iterative Recursive Least Squares-based data detection and channel estimation technique. Corresponding methods and computer program products are also disclosed.
Abstract:
A multi-domain liquid crystal display device includes first and second substrates facing each other; a liquid crystal layer between the first and second substrates; a plurality of gate bus lines arranged in a first direction on the first substrate and a plurality of data bus lines arranged in a second direction on the first substrate to define a pixel region; a electric field inducing window in the pixel region; and a photo alignment layer having a pre-tilt angle on at least one substrate.
Abstract:
An apparatus includes a receiver configurable to receive signals from y pairs of antennas, where y is greater than one, and where the received signals convey coded bits of information. The apparatus further includes a detection block that includes a plurality of search modules configurable to process signals received from pairs of the antennas in parallel to find partial Euclidian distances and determine valid partial candidates for individual antennas; and a plurality of sort modules configurable to sort the valid partial candidates to find M best partial candidates to be combined into M2 final candidates. The apparatus further includes a plurality of a posteriori probability function units arranged to process the M2 final candidates in parallel, with corresponding final Euclidian distances, to determine a posteriori reliability information for coded bits. As an example, the signals are received from four antennas and are modulated using 16-QAM modulation. The apparatus may be embodied at least partially as an integrated circuit that provides a QRD-QLD detection algorithm as part of a wireless MIMO OFDM downlink receiver.
Abstract:
A multi-domain LCD device and a method for manufacturing the same are disclosed in which the process steps can be simplified and picture quality can be improved. The multi-domain LCD device includes first and second substrates, data and gate lines on the first substrate in first and second directions to define a plurality of pixel regions, a pixel electrode in each pixel region, having at least one slit pattern, a dielectric frame within the pixel regions on the second substrate to define a plurality of domains, and a liquid crystal layer between the first and second substrates. The method for manufacturing a multi-domain LCD device includes forming gate and data lines on a first substrate, the data line being formed to cross the gate line, forming a passivation film on the first substrate, forming a transparent conductive film on the passivation film, patterning the transparent conductive film to form a pixel electrode having at least one slit in a pixel region defined by the gate and data lines, forming a dielectric frame within the pixel region to define a plurality of domains on a second substrate opposite to the first substrate, and forming a liquid crystal layer between the first and second substrates.
Abstract:
An LCD includes a liquid crystal panel, first and second polarizing plates attached to opposing surfaces of the liquid crystal panel, a first front light unit over a front side of the liquid crystal panel, a second front light unit over a rear side of the liquid crystal panel, a first film disposed between the first polarizing plate and the first front light unit, for receiving a surrounding light and directing the surrounding light toward the rear side of the liquid crystal panel, and a diffusion sheet disposed between the second polarizing plate and the second front light unit.
Abstract:
A multi-domain liquid crystal display device includes first and second substrates facing each other and a liquid crystal layer between the first and second substrates. A plurality of gate bus lines are arranged in a first direction on the first substrate and a plurality of data bus lines are arranged in a second direction on the first substrate to define a pixel region. A pixel electrode is electrically charged through the data bus line in the pixel region. A common-auxiliary electrode surrounds the pixel electrode on a same layer whereon the gate bus line is formed.
Abstract:
A multi-domain liquid crystal display device includes first and second substrates having pixel regions; a liquid crystal layer formed between the first substrate and the second substrate; a plurality of dielectric structures formed on the first substrate at predetermined intervals; and a pixel electrode having a plurality of electric field induction windows formed to alternate with the dielectric structures.
Abstract:
The present multi-domain liquid crystal display device includes first and second substrates facing each other; a liquid crystal layer between the first and second substrates; a plurality of gate bus lines arranged in a first direction on the first substrate and a plurality of data bus lines arranged in a second direction on the first substrate to define a pixel region; a thin film transistor positioned at a crossing area of the data bus line and the gate bus line, the thin film transistor comprising a gate electrode, a semiconductor layer, and source/drain electrodes; a pixel electrode on the first substrate, the pixel electrode having at least one window inducing electric field therein; a color filter layer on the second substrate, the color filter layer having at least one window distorting electric field therein; a common electrode on the color filter layer; and an alignment layer on at least one substrate between the first and second substrates.
Abstract:
A multi-domain liquid crystal display device includes first and second substrates facing each other and a liquid crystal layer between the first and second substrates. A plurality of gate bus lines are arranged in a first direction on the first substrate and a plurality of data bus lines are arranged in a second direction on the first substrate to define a pixel region. A common-auxiliary electrode is surrounding the pixel region on a same layer whereon the gate bus line is formed. A gate insulator is formed over the whole first substrate and a passivation layer is formed on the gate insulator over the whole first substrate. A pixel electrode is formed in the pixel region, the pixel electrode having an electric field inducing window in the inner part thereof. A light shielding layer is formed on the second substrate, a color filter layer is formed on the light shielding layer, a common electrode is formed on the color filter layer. An alignment layer is formed on at least one substrate between the first and second substrates.
Abstract:
A liquid crystal display device comprises first and second substrates, an alignment layer including a pyranose polymer or a furanose polymer on at least one of the first and second substrates, and a liquid crystal layer between the first and second substrates. The liquid crystal display device is characterized by excellent thermostability, superior anchoring energy and uniform alignment of the liquid crystal achieved in a reduced treatment time without creating any flowing effect in the liquid crystal.