Abstract:
An intravascular device for treating atherosclerotic occlusive disease can include an annular band defining a longitudinal axis between proximal and distal ends. The annular band can have a plurality of barbs on its outer periphery. One or more intravascular devices may be applied in positions along a plaque accumulation site as needed to stabilize the site and/or hold pieces of plaque out of the way of blood flow. The barbs may be pressed into the plaque and/or blood vessel walls.
Abstract:
A plaque tack can be used for holding plaque against blood vessel walls such as in treating atherosclerotic occlusive disease. The plaque tack can be formed as a thin, annular band for holding loose plaque under a spring or other expansion force against a blood vessel wall. Focal elevating elements and/or other features, such as anchors, can be used to exert a holding force on a plaque position while minimizing the amount of material surface area in contact with the plaque or blood vessel wall and reducing the potential of friction with the endoluminal surface. This approach offers clinicians the ability to perform a minimally invasive post-angioplasty treatment and produce a stent-like result without using a stent.
Abstract:
An endoluminal device can be configured for precise positioning during deployment within a vessel. The endoluminal device can be a tack, stent, vascular implant or other type of implant. The endoluminal device can have circumferential member with an undulating configuration having multiple inward and outward apexes and struts extending therebetween. Two of the struts can be used to establish a foot for the precise positioning of the device during deployment. A method of placing the endoluminal device can include withdrawing an outer sheath such that a portion of the endoluminal device is expanded prior to the rest of the endoluminal device.
Abstract:
A tack device for holding plaque against blood vessel walls in treating atherosclerotic occlusive disease can be formed as a thin, annular band of durable, flexible material. The tack device may also have a plurality of barbs or anchoring points on its outer annular periphery. The annular band can have a length in the axial direction of the blood vessel walls that is about equal to or less than its diameter as installed in the blood vessel. A preferred method is to perform angioplasty with a drug eluting balloon as a first step, and if there is any dissection to the blood vessel caused by the balloon angioplasty, one or more tack devices may be installed to tack down the dissected area of the blood vessel surface.
Abstract:
An endoluminal device can be configured for precise positioning during deployment within a vessel. The endoluminal device can be a tack, stent, vascular implant or other type of implant. The endoluminal device can have circumferential member with an undulating configuration having multiple inward and outward apexes and struts extending therebetween. Two of the struts can be used to establish a foot for the precise positioning of the device during deployment. A method of placing the endoluminal device can include withdrawing an outer sheath such that a portion of the endoluminal device is expanded prior to the rest of the endoluminal device.
Abstract:
A system for delivering a surgical staple can include various components. The system may include an elongate body with a proximal end, a distal end, and a plurality of delivery platforms disposed adjacent the distal end. A sheath can move relative to the elongate body from a first position in which the distal end of the sheath is disposed distally of a distal-most distal delivery platform to a second position in which the distal end of the sheath is disposed proximally of at least one delivery platform. A plurality of intravascular tacks can be within the system with each disposed about a corresponding delivery platform.
Abstract:
A plaque tack can be used for holding plaque against blood vessel walls such as in treating atherosclerotic occlusive disease. The plaque tack can be formed as a thin, annular band for holding loose plaque under a spring or other expansion force against a blood vessel wall. Focal elevating elements and/or other features, such as anchors, can be used to exert a holding force on a plaque position while minimizing the amount of material surface area in contact with the plaque or blood vessel wall and reducing the potential of friction with the endoluminal surface. This approach offers clinicians the ability to perform a minimally invasive post-angioplasty treatment and produce a stent-like result without using a stent.
Abstract:
A tack device for holding plaque against blood vessel walls in treating atherosclerotic occlusive disease can be formed as a thin, annular band of durable, flexible material. The tack device may also have a plurality of barbs or anchoring points on its outer annular periphery. The annular band can have a length in the axial direction of the blood vessel walls that is about equal to or less than its diameter as installed in the blood vessel. A preferred method is to perform angioplasty with a drug eluting balloon as a first step, and if there is any dissection to the blood vessel caused by the balloon angioplasty, one or more tack devices may be installed to tack down the dissected area of the blood vessel surface.
Abstract:
A plaque tack can be used for holding plaque against blood vessel walls such as in treating atherosclerotic occlusive disease. The plaque tack can be formed as a thin, annular band for holding loose plaque under a spring or other expansion force against a blood vessel wall. Focal elevating elements and/or other features, such as anchors, can be used to exert a holding force on a plaque position while minimizing the amount of material surface area in contact with the plaque or blood vessel wall and reducing the potential of friction with the endoluminal surface. This approach offers clinicians the ability to perform a minimally invasive post-angioplasty treatment and produce a stent-like result without using a stent.
Abstract:
A tack device for holding plaque against blood vessel walls in treating atherosclerotic occlusive disease is formed as a thin, annular band of durable, flexible material having a plurality of focal elevating elements on its outer annular periphery for holding loose plaque under a spring or other expansion force against a blood vessel wall. The focal elevating elements are designed to exert a holding force on a plaque position while minimizing the amount of material surface area in contact with the plaque or blood vessel wall and reducing the potential of friction with the intraluminal surface. This approach offers clinicians the ability to perform a minimally invasive post-angioplasty treatment and produce a stent-like result without using a stent.