Abstract:
A computer-implemented method for building a semantic analysis model. In one embodiment, the computer-implemented method includes creating proxy tags comprising a set of surface form variants. The computer-implemented method creates training examples comprising a combination of terminal tokens and at least one of the proxy tags. The computer-implemented method builds the semantic analysis model using the training examples.
Abstract:
A method, system or computer usable program product for utilizing a dialectical model for providing an answer to a user query including applying NLP to the query to generate a first set of NLP structures; generating a contrary set of NLP structures contrary to the user query; evaluating the first set of NLP structures to identify a first set of evidence; evaluating the contrary set of NLP structures to identify a second set of evidence; evaluating a first set of hypotheses from the first set of NLP structures and a contrary set of hypotheses from the contrary set of NLP structures to determine a set of answers to the user query; summarizing the set of answers including indicating derivation thereof; and providing the summarized set of answers to the user.
Abstract:
A method, computer program product, and computer system for receiving, by a computing device, a question from a user. A first answer provided by a first subject matter expert is identified. A second answer provided by a second subject matter expert is identified. It is determined that a profile of the user matches a first profile of the first subject matter expert more than a second profile of the second subject matter expert. The first answer provided by the first subject matter expert is sent to the user with a preference over the second answer provided by the second subject matter expert based upon, at least in part, determining that the profile of the user matches the first profile of the first subject matter expert more than the second profile of the second subject matter expert.
Abstract:
A computer-implemented method for building a semantic analysis model. In one embodiment, the computer-implemented method includes creating proxy tags comprising a set of surface form variants. The computer-implemented method creates training examples comprising a combination of terminal tokens and at least one of the proxy tags. The computer-implemented method builds the semantic analysis model using the training examples.
Abstract:
A method, computer program product, and computer system, for receiving a first set of ground truth instances from a first source. A second set of ground truth instances may be received from a second source. The first and second sets of ground truth instances may be weighed differently based on a level of trust associated with each of the first and second sources. The weighted first and second sets of ground truth instances may be applied in a machine learning task executed by a computer.
Abstract:
A method, system or computer usable program product for utilizing a dialectical model for providing an answer to a user query including receiving, by a system, a natural language query from a user; applying, by the system, natural language processing (NLP) to the query to generate a first set of NLP structures; generating, by the system, a contrary set of NLP structures which represent an opposite polarity query to the user query; evaluating, by the system, the first set of NLP structures to identify a first set of evidence for candidate answers; evaluating, by the system, the contrary set of NLP structures to identify a second set of evidence for candidate answers; evaluating, by the system, a first set of hypotheses from the first set of NLP structures based on the first set of evidence for candidate answers, and a contrary set of hypotheses from the contrary set of NLP structures based on the second set of evidence for candidate answers, to determine a set of answers to the user query; converting, by the system, the set of answers to natural language; and providing the converted set of answers to the user.
Abstract:
A method, system or computer usable program product for utilizing a dialectical model for providing an answer to a user query including applying NLP to the query to generate a first set of NLP structures; generating a contrary set of NLP structures contrary to the user query; evaluating the first set of NLP structures to identify a first set of evidence; evaluating the contrary set of NLP structures to identify a second set of evidence; evaluating a first set of hypotheses from the first set of NLP structures and a contrary set of hypotheses from the contrary set of NLP structures to determine a set of answers to the user query; summarizing the set of answers including indicating derivation thereof; and providing the summarized set of answers to the user.
Abstract:
Mechanisms for training a Question and Answer (QA) system are provided. The QA system receives a training question for processing by the QA system and processes the training question to generate an answer to the training question, from a portion of content. The QA system identifies a repeatable pattern of content present in the portion of content in association with the answer to the training question. The QA system applies the repeatable pattern of content to other portions of content to generate at least one additional training question and at least one additional entry in a ground truth data structure to thereby expand a set of training questions and expand the ground truth data structure. The QA system is then trained using the expanded set of training questions and expanded ground truth data structure.
Abstract:
Computer-implemented methods, computer program products, and computer systems for mitigating frequency loss may include one or more processors configured for receiving first audio data corresponding to unobstructed user utterances, receiving second audio data corresponding to first obstructed user utterances, generating a frequency loss (FL) model representing frequency loss between the first audio data and the second audio data, receiving third audio data corresponding to one or more second obstructed user utterances, processing the third audio data using the FL model to generate fourth audio data corresponding to a frequency loss mitigated version of the second obstructed user utterances, and transmitting the fourth audio data to a recipient computing device. The first obstructed user utterances are obstructed by a facemask and the one or more second obstructed user utterances is obstructed by the facemask. The FL model may be executed as an audio plugin in a web conferencing program.
Abstract:
In response to determining that a native language of a first user is different from a target language of a message to be transmitted by the first user to a second user, a translation model based on a plurality of language efficacies of the first user is created. An optimal action associated with a translation of the message from the native language to the target language is determined based on the created model and a language efficacy of the first user in the native language. The determined optimal action is performed. The message translation comprising the performed optimal action is transmitted to the second user.