Abstract:
Methods, apparatus, and systems for operating a surgical system. In accordance with a method, a position of a surgical instrument is measured, the surgical instrument being included in a mechanical assembly having a plurality of joints and a first number of degrees of freedom, the position of the surgical instrument being measured for each of a second number of degrees of freedom of the surgical instrument. The method further includes estimating a position of each of the joints, where estimating the position of each joint includes applying the position measurements to at least one kinematic model of the mechanical assembly, the kinematic model having a third number of degrees of freedom greater than the first number of degrees of freedom. The method further includes controlling the mechanical assembly based on the estimated position of the joints.
Abstract:
Methods, apparatus, and systems for performing minimally invasive surgery through an aperture of a patient. In accordance with a method, parameters are received from an input device associated with a surgeon, the parameters indicating a desired state of an end effector of a surgical instrument oriented through the aperture. The surgical instrument is included in a mechanical assembly having a first set of joints. Instructions are then computed for controlling the mechanical assembly using the received parameters by computing instructions for controlling a second set joints, the second set of joints including the first set of joints and an additional joint, the additional joint being absent from the mechanical assembly. The mechanical assembly is then driven so as to move the end effector toward the desired state based on the computed instructions.
Abstract:
Devices, systems, and methods for cancelling movement one or more joints of a tele-surgical manipulator to effect manipulation movement of an end effector. Methods include calculating movement of joints within a null-perpendicular space to effect desired end effector movement while calculating movement of one or more locked joints within a null-space to cancel the movement of the locked joints within the null-perpendicular-space. Methods may further include calculating movement of one or more joints to effect an auxiliary movement or a reconfiguration movement that may include movement of one or more locked joints. The auxiliary and reconfiguration movements may be overlaid the manipulation movement of the joints to allow movement of the locked joints to effect the auxiliary movement or reconfiguration movement, while the movement of the locked joints to effect manipulation is canceled. Various configurations for devices and systems utilizing such methods are provided herein.
Abstract:
A surgical method is provided, comprising: providing an information structure in a computer readable storage device that associates an indication of surgeon skill level in at least one surgical activity performed using the surgical instrument with a surgical instrument actuator safety state of the surgical instrument for use during performance of the at least one surgical activity using the surgical instrument by a surgeon having the indicated skill level; tracking surgical instrument actuator state of a surgical instrument during performance of a surgical procedure by a surgeon; and transitioning the surgical instrument actuator state of the surgical instrument to the surgical instrument safety state during performance of the at least one surgical activity by the surgeon using the surgical instrument.
Abstract:
A system includes first and second manipulating means, and a means for detecting mounting of an imaging means to the first manipulating means, a means for determining a first reference frame for the imaging means while the imaging means is mounted to the first manipulating means, a means for controlling a tool means relative to the first reference frame by maintaining a position and orientation of a distal portion of the tool means relative to the imaging means in the first reference frame based on a position and orientation of an input means relative to a display means, a means for detecting mounting of the imaging means to the second manipulating means, a means for determining a second reference frame for the imaging means while the imaging means is mounted to the second manipulating means, and a means for controlling the tool means relative to the second reference frame.
Abstract:
Inter-operative switching of tools in a robotic system includes a system with a plurality of manipulators and a controller. The controller is configured to detect mounting of a first imaging device to a first manipulator of the plurality of manipulators, the first imaging device having a first reference frame; in response to detecting the mounting of the first imaging device, control a tool relative to the first reference frame using a second manipulator of the plurality of manipulators, the tool being mounted to the second manipulator; detect mounting of a second imaging device to a third manipulator of the plurality of manipulators, the second imaging device having a second reference frame; and in response to detecting the mounting of the second imaging device, control the tool relative to the second reference frame using the second manipulator.
Abstract:
Systems and related methods control movement of an end effector. A method of controlling movement of an end effector includes receiving, by a controller, a command to close or open an end effector that includes a first jaw member, a second jaw member, a wrist, and an instrument shaft. In response to the command, the controller controls movement of the end effector to simultaneously move the first jaw member relative to the second jaw member and actuate the wrist to orient the end effector so that at least one of a position and an orientation of a reference aspect of the end effector is substantially maintained in space.
Abstract:
Systems and methods for reassigning control by a master controller between a plurality of teleoperational instruments is provided herein. An exemplary method includes detecting activation of an instrument reassignment input, computing proxy positions of at least a first instrument and a second instrument of the plurality of teleoperational instruments, and computing a proxy position of the master controller. The exemplary method may also include receiving input from the master controller associating the proxy position of the master controller with the proxy position of the second medical instrument and assigning control of the second instrument to the master controller based on the association between the proxy position of the master controller with the proxy position of the second instrument.
Abstract:
Methods, apparatus, and systems for controlling a plurality of manipulator assemblies of a robotic system. In accordance with a method, a first plurality of sensor signals are received at a plurality of joint space interface elements from a plurality of connector input elements via a first mapping between the joint space interface elements and joints of the first manipulator assembly. The connector input elements are operable to couple to only one manipulator assembly at a time. The received first sensor signals are then processed with a joint controller so as to control the first manipulator assembly. A second plurality of sensor signals are then received from the connector input elements at the joint space interface elements via a second mapping different than the first mapping. The received second sensor signals are then processed with the joint controller so as to control a second manipulator assembly different than the first manipulator assembly.
Abstract:
A method for torque compensation of a motor associated with a medical instrument includes determining a torque profile for a motor, the torque profile defining torque output as a function of rotor angle and during operation of the motor, compensating for deviations in the torque profile by adjusting an input signal to the motor, the compensating being based on the torque profile and rotor position.