Abstract:
A method of operating a robotic system involves servoing a multitude of joints of the robotic system in a first joint velocity space. The movement of the multitude of joints in the first velocity space moves a remote center or an end effector of the robotic system. The method further involves floating the multitude of joints in a second velocity space. The movement of the multitude of joints in the second velocity space moves the end effector or the remote center, respectively. The method further involves controlling motion of the multitude of joints in a third velocity space. The movement of the multitude of joints in the third velocity space does not move the end effector and does not move the remote center.
Abstract:
A method of operating a robotic system involves servoing a multitude of joints of the robotic system in a first joint velocity space. The movement of the multitude of joints in the first velocity space moves a remote center or an end effector of the robotic system. The method further involves floating the multitude of joints in a second velocity space. The movement of the multitude of joints in the second velocity space moves the end effector or the remote center, respectively. The method further involves controlling motion of the multitude of joints in a third velocity space. The movement of the multitude of joints in the third velocity space does not move the end effector and does not move the remote center.
Abstract:
Devices, systems, and methods for providing commanded movement of an end effector of a manipulator while providing a desired movement of one or more joints of the manipulator. Methods include augmenting a Jacobian so that joint movements calculated. from the Jacobian perform one or more auxiliary tasks and/or desired joint movements concurrent with commanded end effector movement, the one or more auxiliary tasks and/or desired joint movements extending into a null-space. The auxiliary tasks and desired joint movements include inhibiting movement of one or more joints, inhibiting collisions between adjacent manipulators or between a manipulator and a patient surface, commanded reconfiguration of one or more joints, or various other tasks or combinations thereof. Such joint movements may be provided using joint velocities calculated from the pseudo-inverse solution of the: augmented Jacobian. Various configurations for systems utilizing such methods are provided herein.
Abstract:
Devices, systems, and methods for positioning an end effector or remote center of a manipulator arm by floating a first set of joints within a null-perpendicular joint velocity sub-space and providing a desired state or movement of a proximal portion of a manipulator arm concurrent with end effector positioning by driving a second set of joints within a null-space orthogonal to the null-perpendicular space. Methods include floating a first set of joints within a null-perpendicular space to allow manual positioning of one or both of a remote center or end effector position within a work space and driving a second set of joints according to an auxiliary movement calculated within a null-space according to a desired state or movement of the manipulator arm during the floating of the joints. Various configurations for devices and systems utilizing such methods are provided herein.
Abstract:
A patient side cart for a teleoperated surgical system can include at least one manipulator arm portion for holding a surgical instrument, a steering interface, and a drive system. The steering interface may be configured to detect a force applied by a user to the steering interface indicating a desired movement for the teleoperated surgical system. The drive system can include at least one driven wheel, a control module, and a model section. The control module may receive as input a signal from the steering interface corresponding to the force applied by the user to the steering interface. The control module may be configured to output a desired movement signal corresponding to the signal received from the steering interface. The model section can include a model of movement behavior of the patient side cart, the model section outputting a movement command output to drive the driven wheel.
Abstract:
A system and method of breakaway clutching in a computer-assisted medical device includes an articulated arm having one or more first joints and a control unit coupled to the articulated arm and having one or more processors. The control unit operates each of the first joints in multiple states. The multiple states include a locked state, wherein movement of respective first joints is restricted, and a float state, wherein movement of the respective first joints is permitted. The control unit further switches one or more second joints selected from the first joints from the locked state to the float state when a stimulus on the second joints exceeds one or more unlock thresholds and switches the second joints from the float state to the locked state when a velocity of each of the second joints is below one or more lock thresholds.
Abstract:
Devices, systems, and methods for providing commanded movement of an end effector of a manipulator concurrent with a desired movement of one or more joints of the manipulator according to one or more consolidated null-space objectives. The null-space objectives may include a joint state combination, relative joint states, range of joint states, joint state profile, kinetic energy, clutching movements, collision avoidance movements, singularity avoidance movements, pose or pitch preference, desired manipulator configurations, commanded reconfiguration of the manipulator, and anisotropic emphasis of the joints. Methods include calculating multiple null-space movements according to different null-space objectives, determining an attribute for each and consolidating the null-space movements with a null-space manager using various approaches. The approaches may include applying weighting, scaling, saturation levels, priority, master velocity limiting, saturated limited integration and various combinations thereof.
Abstract:
Devices, systems, and methods for avoiding collisions between manipulator arms using a null-space are provided. In one aspect, the system calculates an avoidance movement using a relationship between reference geometries of the multiple manipulators to maintain separation between reference geometries. In certain embodiments, the system determines a relative state between adjacent reference geometries, determines an avoidance vector between reference geometries, and calculates an avoidance movement of one or more manipulators within a null-space of the Jacobian based on the relative state and avoidance vector. The joints may be driven according to the calculated avoidance movement while maintaining a desired state of the end effector or a remote center location about which an instrument shaft pivots and may be concurrently driven according to an end effector displacing movement within a null-perpendicular-space of the Jacobian so as to effect a desired movement of the end effector or remote center.
Abstract:
Devices, systems, and methods for providing commanded movement of an end effector of a manipulator while providing a desired movement of one or more joints of the manipulator. Methods include calculating weighted joint velocities using a weighting matrix within the joint space to anisotropically emphasize joint movement within a null-space to provide the desired movement of a first set of joints. Methods may include calculating joint velocities that achieve the desired end effector movement using a pseudo-inverse solution and adjusting the calculated joint velocities using a potential function gradient within the joint space corresponding to the desired movement of the first set of joints. Methods may include use of a weighted pseudo-inverse solution and also an augmented Jacobian solution. One or more auxiliary movements may also be provided using joint velocities calculated from the pseudo-inverse solution. Various configurations for systems utilizing such methods are provided herein.
Abstract:
Methods, apparatus, and systems for controlling the movement of a mechanical body. In accordance with a method, desired movement information is received that identifies a desired motion of a mechanical body, the mechanical body having a first number of degrees of freedom. A plurality of instructions are then generated by applying the received desired movement information to a kinematic model, the kinematic model having a second number of degrees of freedom greater than the first number of degrees of freedom, each of the instructions being configured to control a corresponding one of the second number of degrees of freedom. A subset of the plurality of instructions are then transmitted for use in controlling the first number of degrees of freedom of the mechanical body.