Abstract:
Iron loss is reduced by increasing magnetic flux density. Disclosed is a non-oriented electrical steel sheet has a chemical composition containing, by mass %, C: 0.0050% or less, Si: 1.50% or more and 4.00% or less, Al: 0.500% or less, Mn: 0.10% or more and 5.00% or less, S: 0.0200% or less, P: 0.200% or less, N: 0.0050% or less, O: 0.0200% or less, and Ca: 0.0010% or more and 0.0050% or less, with the balance being Fe and inevitable impurities, in which the non-oriented electrical steel sheet has an Ar3 transformation temperature of 700° C. or higher, a grain size of 80 μm or more and 200 μm or less, and a Vickers hardness of 140 HV or more and 230 HV or less.
Abstract:
A method for producing a non-oriented electrical steel sheet by hot rolling a steel slab having a chemical composition including C: not more than 0.0050 mass %, Si: not more than 4.0 mass %, Mn: 0.03-3.0 mass %, P: not more than 0.1 mass %, Se: not more than 0.0010 mass %, Al: not more than 3.0 mass %, Ni: not more than 3.0 mass %, Cr: not more than 5.0 mass %, Ti: not more than 0.003 mass %, and Nb: not more than 0.003 mass % and subjecting the sheet to hot band annealing if necessary, a cold rolling, and further a finish annealing, wherein the heating in the finish annealing is conducted in two stages of performing induction heating and subsequently a radiation heating and a zone from 600° C. to 740° C. in the induction heating is heated at an average heating rate of not less than 50° C./sec, whereby a high magnetic flux density can be obtained stably.
Abstract:
A non-oriented electrical steel sheet with excellent recyclability whose magnetic property is prevented from becoming unstable in the case of reducing the Al content in order to reuse the non-oriented electrical steel sheet as iron scrap is provided. The non-oriented electrical steel sheet has a chemical composition containing, in mass %: C: 0.0050% or less; Si: 1.0% or more and 4.0% or less; Mn: 0.10% or more and 3.0% or less; Sol. Al: less than 0.0050%; P: more than 0.01% and 0.20% or less; S: 0.0050% or less; N: 0.0050% or less; Cu: 0.02% or more and less than 0.10%; and Ca: 0.0005% or more and 0.0100% or less, with a balance being Fe and incidental impurities.
Abstract:
A steel slab having a chemical composition including C: not more than 0.005 mass %, Si: not more than 4 mass %, Mn: 0.03-2 mass %, P: not more than 0.2 mass %, S: not more than 0.004 mass %, Al: not more than 2 mass %, N: not more than 0.004 mass %, Se: not more than 0.0010 mass % and the balance being Fe and inevitable impurities is subjected to hot rolling, cold rolling and recrystallization annealing up to 740° C. at an average heating rate of not less than 100° C./s to produce a semi-processed non-oriented electrical steel sheet being high in the magnetic flux density and low in the iron loss after stress relief annealing.
Abstract:
Low iron loss and high magnetic flux density in a Si-gradient magnetic material are achieved. A non-oriented electrical steel sheet is a multilayer electrical steel sheet comprising an inner layer and a surface layer located on each of both sides of the inner layer, wherein the surface layer and the inner layer have specific chemical compositions, ΔSi defined as a difference in Si content between the surface layer and the inner layer is 0.5 mass % to 3.3 mass %, a ratio t1/t of a total thickness t1 of both surface layers to a sheet thickness t is 0.08 to 0.73, a ratio B50/Bs is 0.825 or more, and iron loss W10/10k and the sheet thickness t satisfy W10/10k≤25+6900×t.
Abstract:
Provided is a method of easily producing a non-oriented electrical steel sheet that contains substantially no Al and contains large amounts of Si and Mn and has low iron loss, comprising hot rolling a slab having a specified chemical composition to obtain a hot-rolled sheet; coiling the hot-rolled sheet; cold rolling the hot-rolled sheet once or twice with intermediate annealing being performed therebetween, to obtain a cold-rolled sheet; and subjecting the cold-rolled sheet to final annealing, wherein the hot-rolled sheet after the hot rolling is cooled at an average cooling rate from 800° C. to 650° C. of 30° C./s or more, and thereafter the coiling is performed at 650° C. or less.
Abstract:
Provided are a motor core having excellent fatigue resistance and a method of manufacturing the motor core at a low cost. The motor core that is an electrical-steel-sheet-stacked body has an outer peripheral surface in which an appearance ratio of recrystallized grains with a grain size of 15 μm or less is 70% or more of a sheet thickness of the motor core.
Abstract:
A non-oriented electrical steel sheet is produced by subjecting a steel slab containing, in mass %, C: not more than 0.0050%, Si: 1.0 to 6.5%, Mn: 0.05 to 2.0%, S: not more than 0.0050%, Al: not more than 0.01%, N: not more than 0.0050%, Ti: not more than 0.0030%, Nb: not more than 0.0030% and O: not more than 0.0050% to a hot rolling, a cold rolling and a finish annealing, the finish annealing conducted under conditions that a soaking temperature T (° C.) satisfies the following equation (1): ( 8 0 0 0 + 400 × Si ( mass % ) ) { ( - log ( Al ( mass % ) × N ( mass % ) ) + 1.7 + 0.2 × Si ( mass % ) } - 2 7 3 . 1 5 ≤ T ≤ 1200 , ( 1 ) and an atmosphere in the finish annealing is a mixed gas composed of one or more selected from nitrogen, hydrogen and noble gas with a nitrogen content of not more than 50 vol % and a dew point of not higher than −20° C., whereby a non-oriented electrical steel sheet achieving a high magnetic flux density and a low iron loss is produced.
Abstract:
Provided is a non-oriented electrical steel sheet that contains substantially no Al and contains large amounts of Si and Mn and has low iron loss, comprising a chemical composition containing C: 0.0050% or less, Si: 2.0% or more and 6.0% or less, Mn: 1.0% or more and 3.0% or less, P: 0.20% or less, S: 0.0050% or less, N: 0.0050% or less, Al: 0.0050% or less, and one or more selected from B: 0.0001% or more and 0.0050% or less, Nb: 0.0001% or more and 0.0050% or less, and V: 0.0005% or more and 0.0500% or less, with a balance consisting of Fe and inevitable impurities, wherein a number density of Si—Mn nitrides with an average diameter of 50 nm or more and 500 nm or less is 1 or less per μm3.
Abstract:
Provided is a multilayer electrical steel sheet having low high-frequency iron loss and high magnetic flux density. The multilayer electrical steel sheet has an inner layer and surface layers provided on both sides of the inner layer, in which the surface layers and inner layer have predetermined chemical compositions, the multilayer electrical steel sheet having: ΔSi of 0.5 mass % or more, ΔSi being defined as a difference between a Si content in the surface layer [Si]1 and a Si content in the inner layer [Si]0 represented by [Si]1−[Si]0; Δλ1.0/400 of 1.0×10−6 or less, Δλ1.0/400 being defined as an absolute value of the difference between a magnetostriction of the surface layer λ1.0/400,1 and a magnetostriction of the inner layer λ1.0/400,0; a sheet thickness t of 0.03 mm to 0.3 mm, and a ratio of a total thickness of the surface layers t1 to t of from 0.10 to 0.70.