摘要:
A prosthetic heart valve has leaflets made of a thin and flexible material. The side edges of adjacent leaflets are sewn together so as to form a substantially tubular valve structure having an in-flow end and an out-flow end. Each of the leaflets is adapted to flex inwardly into and out of engagement with another leaflet so as to close and open the valve in response to force by blood pressure. The leaflets are configured so that a portion of the inner face of each leaflet is in a facing relationship with a portion of the inner face of an adjacent leaflet.
摘要:
A replacement heart valve is configured to replace a native atrioventricular heart valve (mitral or tricuspid valve, positioned between an atrial chamber and a ventricular chamber). The replacement valve includes a a thin and flexible wall portion having no more than two leaflets. Two securement locations adjacent the outlet end of the valve are adapted to be attached to respective papillary muscles. The unconstrained regions between the securement locations flex inwardly into and out of engagement with each other in response to blood pressure in order to close and open the valve. The leaflets engage each other along a line of commissure.
摘要:
A method is disclosed for using tubular material to replace a semilunar heart valve (i.e., an aortic or pulmonary valve). To create such a replacement valve, the native valve cusps are removed from inside an aorta or pulmonary artery, and the inlet end of a tubular segment is sutured to the valve annulus. The outlet (distal) end of the tube is either “tacked” at three points distally, or sutured longitudinally along three lines; either method will allow the flaps of tissue between the suture lines to function as movable cusps. This approach generates flow patterns that reduce turbulence and closely duplicate the flow patterns of native semilunar valves. An article of manufacture is also disclosed, comprising a sterile biocompatible synthetic material which has been manufactured in tubular form, by methods such as extrusion or coating a cylindrical molding device, to avoid a need for a suture line or other seam to convert a flat sheet of material into a tubular shape. The synthetic tube is packaged within a sealed watertight enclosure that maintains sterility of the tube.
摘要:
A mitral valve annuloplasty ring and method for implanting a mitral valve annuloplasty ring to treat mitral insufficiency by reestablishing the normal shape and contour of the mitral valve annulus. The annuloplasty ring is flexible and can be readily adjusted to different sizes and shapes. The method substantially eliminates scarring subsequent to the annuloplasty procedure to maintain flexibility of the ring and the annulus indefinitely.
摘要:
A method is disclosed for using tubular material to replace a semilunar heart valve (i.e., an aortic or pulmonary valve). To create such a replacement valve, the native valve cusps are removed from inside an aorta or pulmonary artery, and the inlet end of a tubular segment is sutured to the valve annulus. The outlet (distal) end of the tube is either "tacked" at three points distally, or sutured longitudinally along three lines; either method will allow the flaps of tissue between the suture lines to function as movable cusps. This approach generates flow patterns that reduce turbulence and closely duplicate the flow patterns of native semilunar valves. An article of manufacture is also disclosed, including a sterile biocompatible synthetic material which has been manufactured in tubular form, by methods such as extrusion or coating a cylindrical molding device, to avoid a need for a suture line or other seam to convert a flat sheet of material into a tubular shape. The synthetic tube is packaged within a sealed watertight enclosure that maintains sterility of the tube.
摘要:
This invention comprises a method of using tubular material to replace an atrioventricular (AV) heart valve (i.e., a mitral or tricuspid valve, positioned between an atrial chamber and a ventricular chamber) during cardiac surgery. Preferably, the tubular material should be inherently tubular; i.e., it should be created in tubular form from its inception, rather than by using a longitudinal suture line or other seam to convert a flat sheet of material into a tubular shape. Suitable tubular materials include (1) biocompatible synthetic materials which are manufactured in tubular form, by methods such as extrusion or coating a cylindrical molding device, using material which is sufficiently thin and flexible to serve as leaflets in AV heart valves; and (2) a segment of submucosal tissue harvested from a small intestine, either from the patient who is undergoing the cardiac surgery, or from an animal or human cadaver if the harvested tissue is properly treated to reduce antigenicity. To create a replacement AV valve, the inlet of the tubular segment is sutured to the mitral or tricuspid valve annulus, after the native valve leaflets have been removed. The outlet end of the tube is trimmed or sculpted into leaflets, and the distal ends of the leaflets are sutured to papillary muscles in the ventricle, in a manner which causes the leaflets to "approximate" (close together), during systolic contraction of the heart, in a configuration that resembles the line of commissure created by healthy native leaflets. This generates flow patterns that closely duplicate the flow patterns of native AV valves.
摘要:
This invention comprises a method of using tubular material to replace a heart valve during cardiac surgery. To create a replacement atrioventricular (mitral or tricuspid) valve, the tube inlet is sutured to a valve annulus from which the native leaflets have been removed, and the tube outlet is sutured to papillary muscles in the ventricle. To create a semilunar (aortic or pulmonary) valve, the tube inlet is sutured to an annulus from which the native cusps have been removed, and the tube is either "tacked" at three points distally inside the artery, or sutured longitudinally along three lines; this allows the flaps of tissue between the three fixation points at the valve outlet to function as movable cusps. These approaches generate flow patterns that closely duplicate the flow patterns of native valves. One preferred tubular material comprises submucosal tissue from a small intestine, from the same patient who is undergoing the cardiac operation; this eliminates the risk of immune rejection and the need to treat the tissue to reduce antigenicity. Intestinal tissue from human cadavers or animals such as genetically engineered hypoallergenic pigs can also be used, if properly treated, or a biocompatible synthetic tubular material can be used.
摘要:
An optimal electrophysiologic mapping system for map-directed arrhythmia surgery and cardiac research allows rapid and accurate interpretation of cardiac activation sequences. The system can display activation or potential distribution data on an anatomically accurate 3-D model of the heart and allows fast, interactive control of viewing characteristics, including control of which cardiac surfaces are displayed, control of virtual lighting, rotational control of the displayed image, etc. The system employs two computer programs, GETPIC3 and MAP3, and runs on a Silicon Graphics workstation capable of rapid graphics calculations and displays. The system utilizes 3-D models of epicardial and endocardial surfaces created with the GETPIC3 program from a sequence of 2-D images of a heart. The individual surfaces are triangulated and may be smoothed using a spline function. The MAP3 program displays activation times either as static isochronous maps or as dynamic time-since-last-activation maps. In the latter case, surface color denotes the time elapsed since a particular area activated. Potential distribution data may also be displayed dynamically. A mouse allows the system operator to control real-time rotation of the model in three dimensions, and any surface can be hidden interactively for better viewing of the data. Control is also provided over the starting, stopping, reversing, and repeating of data, as well as over the frame rate for dynamic displays.