Abstract:
A display device is provided. The display device including a display panel including a display area, a frame area; a plurality of pixel electrodes in the display area; a plurality of share electrodes in the display area; a display function layer controlled by the pixel electrodes and the share electrodes; a plurality of touch detect electrodes forming capacitors with the plurality of the share electrodes; a circuit for generating signals to apply to the share electrodes; and a plurality of wirings coupled to the circuit and the share electrodes in the frame area, wherein the longer a path including each of the share electrodes and each of the wirings is, the shorter pulses of each of the signals become.
Abstract:
A force detection apparatus is provided and includes a first electrode facing an input surface to which an object to be detected applies force, and configured to be supplied with a reference potential; a second electrode and a third electrode facing the first electrode; a first conductor arranged between the first electrode, and the second and third electrodes, and configured to be supplied with a drive signal; a first dielectric layer arranged between the first electrode and the first conductor; and a second dielectric layer arranged between the first conductor, and the second and third electrodes, wherein the second electrode is configured to be supplied with the reference potential, and wherein a signal that is same as the drive signal is supplied in synchronization with the drive signal to the third electrode.
Abstract:
According to one embodiment, a display device includes a display panel including a first substrate including a display area and a first detection electrode, a backlight device opposed to the first substrate with a gap therebetween, a second detection electrode opposing the first detection electrode via the backlight device, and an elastic member between the backlight device and the second detection electrode, including a first region opposing a central portion of the back light device and a second region located to surround the first region. The first region and the second region are different in hardness in a thickness direction of the elastic member.
Abstract:
According to an aspect, a force detection apparatus includes: a first electrode facing an input surface to which an object to be detected applies force, and configured to be supplied with a drive signal; a conductor facing the first electrode, and supplied with a reference potential; a second electrode and a third electrode arranged between the first electrode and the conductor; a first dielectric layer arranged between the first electrode, and the second electrode and the third electrode; and a second dielectric layer arranged between the second electrode and the third electrode, and the conductor. The second electrode is supplied with the reference potential. A signal that is the same as the drive signal is supplied in synchronization with the drive signal to the third electrode.
Abstract:
According to an aspect, a force detection apparatus includes: a first electrode facing an input surface to which an object to be detected applies a force; a second electrode facing the first electrode across a first layer deformable by the force; a conductor facing the second electrode across a second layer deformable by the force; and a force detection controller calculates a force signal value indicating the force, based on a first influence amount and a second influence amount, the first influence amount being an amount of influence added by the force to first capacitance between the first electrode and the second electrode, and the second influence amount being an amount of influence added by the force to second capacitance between the second electrode and the conductor.
Abstract:
A sensing unit performs a first sensing process of sensing an approach or a contact of an object to a display panel by collectively sensing electrostatic capacitance of each of a plurality of sensing electrodes provided in a matrix pattern. Further, in a case where the approach or the contact of the object has not been sensed in the first sensing process, the sensing unit repeats the first sensing process, and in a case where the approach or the contact of the object has been sensed in the first sensing process, the sensing unit performs a second sensing process of sensing a position of the object by individually sensing the electrostatic capacitance of each of the plurality of sensing electrodes.
Abstract:
A display device includes a plurality of pixel electrodes, a plurality of drive electrodes and a touch detection electrode. A display function layer is controlled by a voltage generated between the plurality of pixel electrodes and the plurality of drive electrodes in a display period, and touch detection is performed by detecting a voltage of the touch detection electrode in a touch detection period. In the display period, the plurality of drive electrodes are connected to a first wiring, and in the touch detection period, selected drive electrodes of the plurality of drive electrodes are connected to the first wiring, and the other non-selected drive electrodes of the plurality of drive electrodes are connected to a second wiring.
Abstract:
According to an aspect, a display device with a touch detection function includes: a first substrate; a plurality of pixel electrodes in a first region; a display functional layer; a plurality of first drive electrodes facing the pixel electrodes in a perpendicular direction with respect to a surface of the first substrate; and a plurality of touch detection electrodes facing the first drive electrodes and extending in a direction different from a direction in which the first drive electrodes are extended. At least one touch detection electrode of the plurality of touch detection electrodes extends from the first region to a second region adjacent to the first region. A second drive electrode capacitively-coupled to the at least one touch detection electrode is further provided in the second region.
Abstract:
A noise immunity of a detected capacitance is prevented or inhibited from lowering on a driving electrode different in width from the other driving electrodes, provided in an input device. A touch panel serving as an input device has a plurality of driving electrodes extending in an X-axis direction and arranged in a Y-axis direction intersecting with the X-axis direction, and a driving electrode arranged outside one side of an arrangement of the driving electrodes and extending in the X-axis direction. Further, the touch panel TP1 has a plurality of detecting electrodes extending in the Y-axis direction and arranged in the X-axis direction. The width of the driving electrode is smaller than the widths of the driving electrodes and the detecting electrode includes an expanding portion for expanding the area of the detecting electrode on the side opposite to the plurality of driving electrodes via the driving electrode.