Abstract:
A noise immunity of a detected capacitance is prevented or inhibited from lowering on a driving electrode different in width from the other driving electrodes, provided in an input device. A touch panel serving as an input device has a plurality of driving electrodes extending in an X-axis direction and arranged in a Y-axis direction intersecting with the X-axis direction, and a driving electrode arranged outside one side of an arrangement of the driving electrodes and extending in the X-axis direction. Further, the touch panel TP1 has a plurality of detecting electrodes extending in the Y-axis direction and arranged in the X-axis direction. The width of the driving electrode is smaller than the widths of the driving electrodes and the detecting electrode includes an expanding portion for expanding the area of the detecting electrode on the side opposite to the plurality of driving electrodes via the driving electrode.
Abstract:
According to an aspect, a display device with a touch detection function includes: a first substrate; a plurality of pixel electrodes in a first region; a display functional layer; a plurality of first drive electrodes facing the pixel electrodes in a perpendicular direction with respect to a surface of the first substrate; and a plurality of touch detection electrodes facing the first drive electrodes and extending in a direction different from a direction in which the first drive electrodes are extended. At least one touch detection electrode of the plurality of touch detection electrodes extends from the first region to a second region adjacent to the first region. A second drive electrode capacitively-coupled to the at least one touch detection electrode is further provided in the second region.
Abstract:
A display device includes: a display panel having a front surface and a back surface and displaying an image on the front surface; a plurality of detection electrodes overlapping the display panel when seen in a plan view; and a shield electrode overlapping the display panel when seen in a plan view. The shield electrode is arranged on a side opposite to a side of the front surface with respect to the plurality of detection electrodes. Based on electrostatic capacitance of the shield electrode, proximity or contact of an object to the front surface is detected, and based on electrostatic capacitance of each of the plurality of detection electrodes, a position of the object is detected.
Abstract:
A display device includes a display panel, a housing, a second electrode, and a driver. The display panel includes a substrate and a plurality of first electrodes arrayed in a display region of the substrate. The housing has at least a pair of walls facing each other in planar view and is provided with the display panel between the pair of walls. The second electrode is provided to the housing and positioned on the outer side than the display region in planar view and forms capacitance between the second electrode and the first electrodes. The driver supplies a drive signal to the second electrode.
Abstract:
A display device includes a substrate, a plurality of first electrodes, a plurality of second electrodes, at least one third electrode, and a drive circuit. The first electrodes are arrayed in an active area of the substrate. The second electrodes face the first electrodes and form capacitance between the first electrodes and the second electrodes. The third electrode is provided in a peripheral region positioned on the outside of the active area. The drive circuit supplies a drive signal having a phase determined based on a predetermined code to the first electrodes and the third electrode.
Abstract:
According to one embodiment, a display device includes first electrodes overlapping a display area, a cover base covering the display area and a frame area, a second electrode arranged in the cover base and overlapping the frame area, a touch detection driver configured to output a drive signal to the second electrode, and a level shifter arranged between the second electrode and the touch detection driver, and configured to increase a signal level of the drive signal and output the drive signal having the increased signal level to the second electrode. The touch detection driver is configured to detect contact or proximity to an object with the frame area based on electrostatic capacitance between the first electrodes and the second electrode.
Abstract:
According to an aspect, a display device with a touch detection function includes: a first substrate; a plurality of pixel electrodes in a first region; a display functional layer; a plurality of first drive electrodes facing the pixel electrodes in a perpendicular direction with respect to a surface of the first substrate; and a plurality of touch detection electrodes facing the first drive electrodes and extending in a direction different from a direction in which the first drive electrodes are extended. At least one touch detection electrode of the plurality of touch detection electrodes extends from the first region to a second region adjacent to the first region. A second drive electrode capacitively-coupled to the at least one touch detection electrode is further provided in the second region.
Abstract:
In relation to touch sensors, technique capable of shortening total touch drive time and a touch detection period or suppressing increase thereof are provided. In a panel unit of a touch-sensor device, a touch drive unit generates a first pulse to an M-th pulses which are pulses of a plurality of types having mutually different cycles in accordance with differences in time constants with respect to paths including wirings of a peripheral area, touch drive electrodes, units of touch detection, touch detection electrodes, and wirings of the peripheral area through which pulses of touch drive signals to the plurality of touch drive electrodes are transmitted in a touch detection area in which the plurality of units of touch detection formed by pairs of the plurality of touch drive electrodes and the plurality of touch detection electrodes are formed like a matrix, and the touch drive unit applies the pulses.
Abstract:
A force detection apparatus includes: a force detector that includes an electrode and a conductor facing the electrode across a first and a second layers and outputs a force signal value before correction; and a force detection controller outputting a force signal value after correction having a linear relationship with a force. In a first range of force in which the first layer is deformed and the second layer is not deformed, the force detection controller calculates the force signal value after correction, based on a product of the force and a first constant. In a second range of force in which the first and second layers are deformed, the force detection controller calculates the force signal value after correction, based on a sum of a product of a threshold and the first constant and a product of a difference between the force and the threshold and a second constant.
Abstract:
A display device includes a first substrate, a plurality of first electrodes, a second electrode, a third electrode, and a driver. The first electrodes are disposed in a display region of the first substrate. The second electrode faces the first electrodes in a direction perpendicular to the surface of the first substrate and forms capacitance between the second electrode and the first electrodes. The third electrode is provided in a peripheral region positioned on the outside of the display region and does not overlap the first electrodes in planar view. The driver supplies a drive signal to the third electrode and at least one of the first electrodes simultaneously.