Abstract:
A technique is provided for imaging a field of view using an X-ray source comprising two or more emission points. The two or more emission points may be independently operated. Independent operation of the two or more emission points in performed in accordance with a list of commands that specifies the operation of the emission points. The list of commands, in one embodiment, is stored in a sequence buffer. In other embodiments, the list of commands is generated for a given usage, without being stored in a sequence buffer.
Abstract:
A CT imaging system includes a rotatable gantry having an opening to receive an object to be scanned. A plurality of x-ray emission sources are attached to the rotatable gantry, each x-ray emission source configured to emit x-rays in a conebeam toward the object. The CT imaging system also includes a plurality of x-ray detector arrays attached to the gantry and positioned to receive x-rays passing through the object. At least one x-ray detector array of the plurality of x-ray detector arrays is configured to receive x-rays from more than one x-ray emission source.
Abstract:
A system and method for CT projection extrapolation are provided. The method comprises receiving a CT projection for extrapolation. The method also comprises selecting a target patch comprising at least one pixel of a row to be extrapolated. The method further comprises generating a correlation profile between the target patch and one or more source patches, wherein the source patches comprise measured pixels in the CT projection in one or more rows adjacent to the target patch. The projection data is generated for at least one pixel of the target patch based on the correlation profile and the measured pixels of at least one of the source patches.
Abstract:
A system and method for CT sinogram extrapolation are provided. The method comprises receiving a CT projection for extrapolation. The method also comprises selecting a target patch comprising at least one pixel of a row to be extrapolated. The method further comprises generating a correlation profile between the target patch and one or more source patches, wherein the source patches comprise measured pixels in the CT projection in one or more rows adjacent to the target patch. The projection data is generated for at least one pixel of the target patch based on the correlation profile and the measured pixels of at least one of the source patches.
Abstract:
A method for reconstructing image data from measured sinogram data acquired from a CT system is provided. The CT system is configured for industrial imaging. The method includes pre-processing the measured sinogram data. The pre-processing includes performing a beam hardening correction on the measured sinogram data and performing a detector point spread function (PSF) correction and a detector lag correction on the measured sinogram data. The pre-processed sinogram data is reconstructed to generate the image data.
Abstract:
A method for reconstructing image data from measured sinogram data acquired from a CT system is provided. The CT system is configured for industrial imaging. The method includes pre-processing the measured sinogram data. The pre-processing includes performing a beam hardening correction on the measured sinogram data and performing a detector point spread function (PSF) correction and a detector lag correction on the measured sinogram data. The pre-processed sinogram data is reconstructed to generate the image data.