Abstract:
Systems and methods are provided for acquiring and reconstructing projection data that is mathematically complete or sufficient using a computed tomography (CT) system having stationary distributed X-ray sources and detector arrays. In one embodiment, a distributed source is provided as arcuate segments offset in the X-Y plane and along the Z-axis.
Abstract:
Disclosed are embodiments of methods for reconstructing x-ray projection data (e.g., one or more sinograms) acquired using a multi-source, inverse-geometry computed tomography (“IGCT”) scanner. One embodiment of a first method processes an IGCT sinogram by rebinning first in “z” and then in “xy,” with feathering applied during the “xy” rebinning. This produces an equivalent of a multi-axial 3rd generation sinogram, which may be further processed using a parallel derivative and/or Hilbert transform. A TOM-window (with feathering) technique and a combines backprojection technique may also be applied to produce a reconstructed volume. An embodiment of a second method processes an IGCT sinogram using a parallel derivative and/or redundancy weighting. The second method may also use signum weighting, TOM-windowing (with feathering), backprojection, and a Hilbert Inversion to produce another reconstructed volume.
Abstract:
Algorithms are disclosed that recombine acquired data so as to generate a substantially uniform and complete set of frequency data where frequency data might otherwise be incomplete. This process, or its equivalent, may be accomplished in a computationally efficient manner using filtering steps in one or both of the reconstruction space and/or the post-processing space.
Abstract:
Approaches for acquiring CT image data corresponding to a full scan, but at a reduced dose are disclosed. In one implementation, X-ray tube current modulation is employed to reduce the effective dose. In other implementations, acquisition of sparse views, z-collimation, and two-rotation acquisition protocols may be employed to achieve a reduced dose relative to a full-scan acquisition protocol.
Abstract:
A method of performing a computed tomographic image reconstruction is provided. The method provides for performing a short scan of an imaging object to acquire a short scan data, performing a plurality of image reconstructions based on the short scan data wherein the plurality of image reconstructions result in a corresponding plurality of image volumes wherein the image reconstructions use different view weighting functions, filtering the plurality of image volumes such that when the volumes are added together, the frequency domain data is substantially uniformly weighted. Further, the method provides for combining the plurality of image volumes together to produce a final image volume.
Abstract:
A CT imaging system includes a rotatable gantry having an opening to receive an object to be scanned. A plurality of x-ray emission sources are attached to the rotatable gantry, each x-ray emission source configured to emit x-rays in a conebeam toward the object. The CT imaging system also includes a plurality of x-ray detector arrays attached to the gantry and positioned to receive x-rays passing through the object. At least one x-ray detector array of the plurality of x-ray detector arrays is configured to receive x-rays from more than one x-ray emission source.
Abstract:
Approaches for acquiring CT image data corresponding to a full scan, but at a reduced dose are disclosed. In one implementation, X-ray tube current modulation is employed to reduce the effective dose. In other implementations, acquisition of sparse views, z-collimation, and two-rotation acquisition protocols may be employed to achieve a reduced dose relative to a full-scan acquisition protocol.
Abstract:
Approaches are described for generating an initial reconstruction of CT data acquired using a wide-cone system. The initial reconstruction may be processed (such as via a non-linear operation) to correct frequency omissions and/or errors in the reconstruction. Corrected frequency information may then be added to the reconstruction to improve the reconstructed image.
Abstract:
A method of performing a computed tomographic image reconstruction is provided. The method provides for performing a short scan of an imaging object to acquire a short scan data, performing a plurality of image reconstructions based on the short scan data wherein the plurality of image reconstructions result in a corresponding plurality of image volumes wherein the image reconstructions use different view weighting functions, filtering the plurality of image volumes such that when the volumes are added together, the frequency domain data is substantially uniformly weighted. Further, the method provides for combining the plurality of image volumes together to produce a final image volume.
Abstract:
Systems and methods are provided for acquiring and reconstructing projection data using a computed tomography (CT) system having stationary distributed X-ray sources and detector arrays. In one embodiment, a non-sequential activation of X-ray source locations on an annular source is employed to acquire projection data. In another embodiment, a distributed source is tilted relative to an axis of the scanner to acquire the projection data. In a further embodiment, a plurality of X-ray source locations on an annular source are activated such that the aggregated signals correspond to two or more sets of spatially interleaved helical scan data.