摘要:
A switching power supply circuit includes a direct current (DC) power supply input; a voltage divider connected between the DC power supply input and ground; a transformer including a primary winding, a secondary winding, and an assistant winding; a pulse generating circuit including a first transistor, a second transistor, an oscillation capacitor, and an oscillation resistor; an output; and a feedback circuit adjusting a duty ratio of a pulse signal in the assistant winding. The DC power supply input is grounded via the primary winding, two conducting electrodes of the second transistor. A control electrode of the second transistor is connected to an output of the voltage divider. An output of the voltage divider is connected to a control electrode of the second transistor and is grounded via two conducting electrodes. A control electrode of the first transistor is grounded via the assistant winding and grounded via the oscillation capacitor and the oscillation resistor connected in series.
摘要:
An exemplary backlight driving circuit (20) a first power supply (260); a second power supply (270); a signal output terminal (280); an AND gate (210); a follower (220); a capacitor (290); a reverser (230); a first transistor (240), which is a N-Channel mode metal-oxide-semiconductor field-effect transistor (N-MOSFET), having a gate electrode connected to an output end of the AND gate through the follower, a source electrode connected to the signal output terminal, a drain electrode connected to the first power supply; and a second transistor (250), which is a N-Channel mode metal-oxide-semiconductor field-effect transistor (N-MOSFET), having a gate electrode connected to the output end of the AND gate through the reverser, a source electrode connected to the ground, a drain electrode connected to the signal output terminal.
摘要:
An exemplary backlight modulation circuit (200) includes a pulse generator circuit (210) configured for generating a first square pulse; a voltage division circuit (230) configured for receiving the first square pulse and generating a second square pulse according to the first square pulse; an oscillator circuit (240) configured for generating a reference voltage; and an amplifier (200) comprising a negative input configured for receiving the second square pulse from the voltage division circuit, and a positive input configured for receiving the reference voltage from the oscillator circuit as a reference pulse signal, the amplifier being configured for generating a backlight adjusting signal according to the reference pulse signal and the second square pulse.
摘要:
An exemplary backlight control circuit (200) includes a DC power supply (VDD), a load circuit (210), an input circuit (230), and a PWM IC (250). The load circuit includes two light sources (2113, 2114) and a rectifier and filter circuit (213). The input circuit includes a diode (231) and a capacitor (237). The PWM IC includes a current sampling pin (251) and an overvoltage protection pin (253). A low voltage terminal of a first one of the two light sources is connected to the current sampling pin via the rectifier and filter circuit, and a low voltage terminal of a second one of the two light sources is connected to a cathode of the diode. An anode of the diode is connected to the DC power supply and grounded via the capacitor. The overvoltage protection pin is connected to the DC power supply.
摘要:
An exemplary backlight control circuit (20) includes: at least two load circuits (210), a pulse width modulation integrated circuit (PWM IC) (250) having a current sampling pin (251), a switching circuit (270), and an input circuit (230). Each load circuit includes a backlight and a backlight inspecting circuit having an output end. The switching circuit includes a first transistor which includes a source electrode connected to ground, a drain electrode connected to the current sampling pin, a gate electrode connected to a power supply. The input circuit includes at least two first diodes, at least two input resistor, a second transistor, and a pink-to-pink detector circuit. The pink-to-pink detector circuit includes a second diode, a second bias resistor, and a second filter capacitor. Each output end of the load circuits is connected to the gate electrode of the second transistor via the input resistor, the first and second diode.
摘要:
An exemplary inverter circuit (2) includes a first switch circuit (22) including a first transistor (221) and a second transistor (222); a second switch circuit (23) including a third transistor (231) and a fourth transistor (232); and a pulse width modulation circuit (21) including a first output terminal (211) and a second output terminal (212). A gate electrode of the first transistor is connected to the first output port. A gate electrode of the second transistor is connected to the second output port. A gate electrode of the third transistor is connected to the first output port. A gate electrode of the fourth transistor is connected to the second output port. A drain electrode of the third transistor is connected to a drain electrode of the first transistor, and a drain electrode of the fourth transistor is connected to a drain electrode of the second transistor.
摘要:
An exemplary backlight control circuit (20) includes at least two sampling circuits (21), at least two feedback circuits (22), and a PWM IC (23). Each of the sampling circuits includes a sampling output (210) and a backlight lamp (211). The PWM IC includes a current sense pin (230). The at least two feedback circuits correspond to the at least two sampling circuits, respectively. Each of the feedback circuits includes a resistor (222) and a diode (223) electrically coupled in parallel. The sampling output is configured to output a first voltage when the backlight lamp is in a normal working state, and output a second voltage when the backlight lamp has an open circuit. One terminal of the diode is electrically coupled to the sampling output of a corresponding one of the sampling circuits, and an opposite terminal of the diode is electrically coupled to the current sense pin.
摘要:
An exemplary backlight control circuit (20) includes at least two sampling circuits (21), at least two feedback circuits (22), and a PWM IC (23). Each of the sampling circuits includes a sampling output (210) and a backlight lamp (211). The PWM IC includes a current sense pin (230). The at least two feedback circuits correspond to the at least two sampling circuits, respectively. Each of the feedback circuits includes a resistor (222) and a diode (223) electrically coupled in parallel. The sampling output is configured to output a first voltage when the backlight lamp is in a normal working state, and output a second voltage when the backlight lamp has an open circuit. One terminal of the diode is electrically coupled to the sampling output of a corresponding one of the sampling circuits, and an opposite terminal of the diode is electrically coupled to the current sense pin.
摘要:
An exemplary printed circuit board (2) includes a substrate (21) and a printed circuit (20) formed on the substrate. The printed circuit includes a first input wire (210) and a ground wire (230). The first input wire includes at least one tip and the ground wire includes at least one tip facing the at least one tip of the first input wire. Each of the tips of the first input wire and the ground wire defines a pointed end.
摘要:
An exemplary backlight modulation circuit (200) includes a pulse generator circuit (210) configured for generating a first square pulse; a voltage division circuit (230) configured for receiving the first square pulse and generating a second square pulse according to the first square pulse; an oscillator circuit (240) configured for generating a reference voltage; and an amplifier (200) comprising a negative input configured for receiving the second square pulse from the voltage division circuit, and a positive input configured for receiving the reference voltage from the oscillator circuit as a reference pulse signal, the amplifier being configured for generating a backlight adjusting signal according to the reference pulse signal and the second square pulse.