摘要:
Prioritizing network traffic among two or more distinct channels of communication within a single application in a node configured to communicate with one or more other nodes over a network is disclosed. For a particular time quantum, a bandwidth quantum may be distributed amongst two or more communication channels according to priorities associated with those channels.
摘要:
Prioritizing network traffic among two or more distinct channels of communication within a single application in a node configured to communicate with one or more other nodes over a network is disclosed. For a particular time quantum, a bandwidth quantum may be distributed amongst two or more communication channels according to priorities associated with those channels. Ready data for each channel may be transmitted over a network path up to the size of the reserved portion for that channel and not greater than a path maximum transmission unit (MTU) size for a network path. This abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
In a distributed hash table overlay network, messages directed to a message ID are relayed to one or more nodes that have published interest in that message ID. Messages are distributed, processed, and/or cached in accordance with relay policies, which enable a wide variety of different applications. Nodes specify relay policies on a per-node, per-message, and/or per-message ID basis. Relay policies can specify any behavior associated with messages, including: message caching, distribution, and processing as well as migration of relay policies when nodes join or leave the network. Intermediate nodes can perform any arbitrary processing of messages based on relay policies. Intermediate nodes can offload processing to other nodes, either by forwarding messages to a different message ID or by enlisting the help of nodes subscribed to the message ID. Messages can include one or more subfields specifying commands and/or data to be evaluated by the intermediate node.
摘要:
Network bandwidth detection and distribution and prioritizing network traffic among two or more distinct channels of communication within a single application in a node configured to communicate with one or more other nodes over a network is disclosed. For a particular time quantum, a bandwidth quantum may be distributed amongst two or more communication channels according to priorities associated with those channels.
摘要:
Methods for obtaining and distributing auxiliary content assets for an interactive environment and a client device and server that may implement such methods are disclosed. The client device displays a scene of a portion of the simulated environment from a camera point of view (camera POV) on a video display. The client device generates a pre-hint vector based on position of the camera POV, sends the vector to a server and receives auxiliary content information from the server. The server receives the pre-hint vector, determines the future field from the pre-hint vector, identifies one or more auxiliary content targets within the potential future field of view, and sends auxiliary content information for the identified targets to the client device.
摘要:
An atomic compare and swap operation that can be implemented in processor system having first and second processors that have different sized memory transfer capabilities. The first processor notifies the second processor to perform a compare and swap operation on an address in main memory. The address has a size less than or equal to a maximum memory transfer size for the second processor and greater than a maximum memory transfer size for the first processor. The second processor atomically performs the compare and swap operation and notifies the first processor of the success or failure of the compare and swap operation.
摘要:
An atomic compare and swap operation that can be implemented in processor system having a power processor element (PPE) and a synergistic processor element (SPE) that have different sized memory transfer capabilities. The PPE notifies an SPE to perform a compare and swap operation on an address in main memory. The address has a size less than or equal to a maximum memory transfer size for the SPE and greater than a maximum memory transfer size for the PPE. The SPE atomically performs the compare and swap operation and notifies the PPE of the success or failure of the compare and swap operation.
摘要:
An atomic compare and swap operation that can be implemented in processor system having first and second processors that have different sized memory transfer capabilities. The first processor notifies the second processor to perform a compare and swap operation on an address in main memory. The address has a size less than or equal to a maximum memory transfer size for the second processor and greater than a maximum memory transfer size for the first processor. The second processor atomically performs the compare and swap operation and notifies the first processor of the success or failure of the compare and swap operation.
摘要:
Methods and apparatus for facilitating traversal of a network address translator (NAT) are disclosed. For example, a node configured to communicate with one or more other nodes over a network may facilitate NAT traversal by a) determining information regarding the behavior of one or more NATs with the node; and storing the information in such a way that the information is retrievable by one or more other nodes; or b) retrieving information regarding behavior of one or more NATs obtained by one or more other nodes and using the information to traverse one or more of the NATs.