Abstract:
In general, techniques are described for dynamically modifying the extent of logging performed by logging information generators in response to events detected in logging information received by the collector. In some examples, a network device includes one or more processors and a collector executed by the processors to receive a log message that includes logging information from a generator. The network device also includes a rules engine to apply one or more rules that each specify a condition and a corresponding action to the logging information to identify a matching rule, wherein the rules engine, upon identifying a matching rule, executes the action of the matching rule to generate and send a logging modification message to increase an extent to which the generator generates logging information.
Abstract:
In general, techniques are described in which a plurality of network switches automatically configure themselves to operate as a single virtual network switch. A virtual switch is a collection of individual switch devices that operate like as single network switch. As described herein, network switches in a network that are capable of participating in a virtual switch may automatically discover one another. The participating network switches may then elect one of the participating switches as a master switch. The master switch may generate forwarding information and store the forwarding information in the participating switches, including the master switch. The forwarding information causes the participating switches to act like a single network switch.
Abstract:
Techniques are described for determining latency in a physical network that includes a number of network devices over which packets travel. A virtual network controller receives a plurality of messages from a plurality of network devices in a network, each of the messages including a packet signature comprising a hash of an invariant portion of an original packet that uniquely identifies the original packet, an identifier of one of the plurality of network devices from which the respective message was received, and a timestamp indicating a time an original packet was processed by the network device from which the respective message was received. The virtual network controller determines a latency of a physical network path in the network based on analysis of contents of the identified messages having a common packet signature.
Abstract:
Techniques for facilitating the operation of one or more virtual networks are described. In some examples, a system may include a first controller node device configured to control operation of a first set of elements in the one or more virtual networks, wherein the first set of elements includes a first server device. The system may also include a second controller node device configured to control operation of a second set of elements in the one or more virtual networks, wherein the second set of elements includes the second server device. The first controller node device and the second controller node device are peers according to a peering protocol by which the first controller node device and the second controller node device exchange information relating to the operation of the first set of elements and the second set of elements.
Abstract:
In general, techniques are described for determining a physical network path taken by packets of a network packet flow. The techniques may be applied to determine, or “trace,” a physical network path in the virtualized network domain. In some examples, a network device includes one or more processors and a switch executed by the processors to forward packets of a packet flow to a physical network path. The network device also includes a flow trace module to generate one or more flow trace packets having incrementally increasing respective time-to-live (TTL) values, wherein the switch module forwards the flow trace packets on an outbound interface of the network device for the physical network path, and wherein the flow trace module receives corresponding time exceeded messages for the flow trace packets, wherein each of the time exceeded message includes a source network address of a network element on the physical network path.
Abstract:
In general, techniques are described for dynamically modifying the extent of logging performed by logging information generators in response to events detected in logging information received by the collector. In some examples, a network device includes one or more processors and a collector executed by the processors to receive a log message that includes logging information from a generator. The network device also includes a rules engine to apply one or more rules that each specify a condition and a corresponding action to the logging information to identify a matching rule, wherein the rules engine, upon identifying a matching rule, executes the action of the matching rule to generate and send a logging modification message to increase an extent to which the generator generates logging information.