Abstract:
In one example, techniques of this disclosure may enable a point of local repair (PLR) network device to signal availability of link protection or node protection to a merge point (MP) network device and enable a network device to actively determine whether or not it is a merge point router. Based on whether or not the network device determines it is a MP, the network device may selectively clean up LSP states when there is an upstream link or node failure. The RSVP-TE protocol may be extended to enable a network device to send a tear down message to a downstream router, which may enable the downstream router to conditionally delete locale LSP state information. In some instances, a PLR network device may directly send a tear down message to a MP network device even though the PLR network device may not have a working bypass LSP.
Abstract:
The disclosed computer-implemented method for verifying the functionality of network paths may include (1) constructing, at a source node within a network, a test packet that uniquely identifies a network path whose functionality is unverified, (2) sending the test packet to a target node within the network via the network path in an attempt to verify the functionality of the network path, (3) receiving, back from the target node, the test packet sent to the target node via the network path, and then (4) verifying, at the source node, the functionality of the network path based at least in part on the test packet received back from the target node. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
Techniques are described for reusing downstream-assigned labels when establishing a new instance of a label switched path (LSP) prior to tearing down an existing instance of the LSP using make-before-break (MBB) procedures for RSVP. The techniques enable a routing engine of any non-ingress router along a path of the new LSP instance to reuse a previously allocated label for the existing LSP instance as the downstream assigned label for the new LSP instance when the paths of the existing LSP instance and the new LSP instance overlap. In this way, the non-ingress router does not need to update a label route in its forwarding plane for the reused label. When the new LSP instance completely overlaps the existing LSP instance, an ingress router of the LSP may avoid updating an ingress route in its forwarding plane for applications that use the LSP.
Abstract:
Techniques are described for generating a No-Acknowledgement (NACK) message if the installation of a route for a label-switched path at a router has failed or is likely to fail. In some examples, a network device includes at least one processor and at least one module operable by the at least one processor to: receive a request to forward network packets for an LSP; responsive to receiving the request, initiate configuration of at least one forwarding unit of the network device to forward network packets for the LSP; generate a NACK message that indicates the at least one forwarding unit is not configured to forward the network packets for the LSP; and terminate based at least in part on the NACK message, the configuration of the at least one forwarding unit for the LSP.
Abstract:
In one example, techniques of this disclosure may enable a point of local repair (PLR) network device to signal availability of link protection or node protection to a merge point (MP) network device and enable a network device to actively determine whether or not it is a merge point router. Based on whether or not the network device determines it is a MP, the network device may selectively clean up LSP states when there is an upstream link or node failure. The RSVP-TE protocol may be extended to enable a network device to send a tear down message to a downstream router, which may enable the downstream router to conditionally delete locale LSP state information. In some instances, a PLR network device may directly send a tear down message to a MP network device even though the PLR network device may not have a working bypass LSP.
Abstract:
In one example, techniques of this disclosure may enable a point of local repair (PLR) network device to signal availability of link protection or node protection to a merge point (MP) network device and enable a network device to actively determine whether or not it is a merge point router. Based on whether or not the network device determines it is a MP, the network device may selectively clean up LSP states when there is an upstream link or node failure. The RSVP-TE protocol may be extended to enable a network device to send a tear down message to a downstream router, which may enable the downstream router to conditionally delete locale LSP state information. In some instances, a PLR network device may directly send a tear down message to a MP network device even though the PLR network device may not have a working bypass LSP.