Abstract:
The invention relates to a step drill having a shaft section extending along a longitudinal axis of the step drill and a cutting section with a cutting tip, and having a chip-breaking geometry which comprises a concavely curved surface and is configured such that ribbon chips are broken on the concavely curved surface during rotation of the step drill, whereby the chip-breaking geometry is disposed on a reaming step of the step drill.
Abstract:
The invention relates to a drill tip (2), comprising a center (4), at which a chisel edge (6) is arranged, and comprising a main cutting edge (8), which adjoins the chisel edge (6) and runs outward from the center (4). A rake angle is formed along the chisel edge (6) and the main cutting edge (8). The main cutting edge (8) has an inner portion (10), which adjoins the chisel edge (6) and is arranged within the center (4). The main cutting edge (8) has an outer portion (12), which outwardly adjoins the inner portion (10) and is arranged outside of the center (4). A point thinning (16) is formed on the drill tip (2), which point thinning is curved in such a way that the inner portion (10) runs arcuately from an outer edge of the center (4) toward the chisel edge (6). The invention further relates to a method for producing a drill tip (2) of this type.
Abstract:
The invention relates to a drill comprising a body which extends along a longitudinal axis (L) from a rear side (B) to a front side (F), wherein the body comprises a main cutting edge on the front side (F), wherein the body comprises at least one guide bevel which extends in axial direction (A) and toward the front side (F), wherein, toward the front side (F), the guide bevel has an end section which is tapered. The invention further relates to a method for producing such a drill.
Abstract:
A tool head for use with a modular shank tool includes at least two preforms. Each preform of the at least two preforms is made separately from the other preform of the at least two preforms from granular materials and then put together and jointly compressed and integrally bonded.
Abstract:
A tool coupling used for a clamping connection between two coupling parts, in particular between a cutting head and a carrier of a rotary tool, in particular of a drill. The coupling parts comprise clamping sections, which respectively correspond to one another and which can be clamped against each other by turning counter to a predefined direction of rotation about an axis of rotation so that a press fit is produced. In order to produce a high clamping force and at the same time allow for a simple installation via screwing in, each clamping section comprises several successive clamping surfaces which—with respect to a cross section viewed orthogonally to the axial direction—respectively travel along a circular arc, wherein the diameter increases for clamping surfaces succeeding one another in the direction of rotation.
Abstract:
The invention relates to a method for producing a blank, in particular a blank for the production of a cutting tool, wherein a green body extending in the direction of the extrusion axis is produced from extrusion material by means of an extruder which has an extrusion channel extending along an extrusion axis; wherein the extrusion channel together with a movable mold element forms a die of the extruder; and wherein the mold element is moved relative to the extrusion channel and within said extrusion channel during the extrusion of the green body, whereby the shaping geometry of the die is changed so that the completely extruded green body hereby has a first functional segment and a second functional segment adjacent thereto in the direction of the extrusion axis (4); wherein the two functional segments differ with regard to their geometries impressed by the die.
Abstract:
A rotary tool designed as a modular drill, extending in an axial direction along an axis of rotation. It comprises two coupling parts: a carrier; and a cutting head that is attached to the carrier so as to be exchangeable. The carrier includes pin receiving means, into which a coupling pin of the cutting head is introduced in a clamping manner and so as to be reversibly exchangeable. The pin receiving means and the coupling pin have torque sections and clamping sections that correspond to one another and are oriented parallel to the axis of rotation. In addition, to prevent axial pull-out, stop surfaces are provided on the pin receiving means and on the coupling pin, the stop surfaces being effective in an axial direction and corresponding to one another. These stop surfaces preferably extend horizontally and therefore perpendicular to the axis of rotation.
Abstract:
The rotary tool comprises a support and a cutting head which can be inserted into a pin receptacle of the support via a coupling pin. The support and the cutting head have mutually corresponding surface sections for transferring a radial clamping force and have mutually corresponding torque sections for transferring torque. For an axial pull-out stop device, effective stop surfaces are formed on the pin receptacle and on the coupling pin in the axial direction, wherein, to do this, a stop element is formed, the radial extension of which is smaller than or equal to a radial extension (r2) of the surface sections of the coupling pin and wherein the stop surfaces and the surface section are offset relative to each other in the circumferential direction.
Abstract:
The rotary tool comprises a support and a cutting head which can be inserted into a pin receptacle of the support via a coupling pin. The support and the cutting head have mutually corresponding surface sections for transferring a radial clamping force and have mutually corresponding torque sections for transferring torque. For an axial pull-out stop device, effective stop surfaces are formed on the pin receptacle and on the coupling pin in the axial direction, wherein, to do this, a stop element is formed, the radial extension of which is smaller than or equal to a radial extension (r2) of the surface sections of the coupling pin and wherein the stop surfaces and the surface section are offset relative to each other in the circumferential direction.