Abstract:
An electrical coupling device for solar cells includes a conductive member characterized by a single shaped thickness of material. The member includes a first portion extending a first length from a first end region and a second portion extending a second length from a second end region. The member also includes a U-like-shaped portion including a first branch, a second branch, and a joint region integrally connecting the first branch and the second branch. The first branch is integrally connected to the first portion at a first junction region and the second branch is integrally connected to the second portion at a second junction region. The first end region connects a first electrical lead of a first solar cell and the second end region connects a second electrical lead of a second solar cell which is disposed at flexible distance allowed by deforming the U-like-shaped portion elastically.
Abstract:
A solar cell device. The device has a housing member. The device also has a lead frame member coupled to the housing member. In a preferred embodiment, the lead frame member has at least one photovoltaic strip thereon, which has a surface region and a back side region. The device has an optical elastomer material having a first thickness overlying the surface region of the photovoltaic surface. The device has a second substrate member comprising at least one optical concentrating element thereon. The optical concentrating element has a first side and a second side. The device has a first interface within a vicinity of the surface region and the first thickness of the optical elastomer material and a second interface within a vicinity of the second side and the optical elastomer material. In a specific embodiment, the optical concentrating element is coupled to the surface region of the photovoltaic strip such that the optical elastomer material is in between the surface region of the photovoltaic strip and the second side of the optical concentrating element. In a specific embodiment, the device has a spacing comprising essentially the optical elastomer material between the second side of the optical concentrating element and the surface region of the photovoltaic strip. The device has a plurality of particles having a predetermined dimension (e.g., non-compressible and substantially non-deformable particles) spatially disposed overlying the surface region of the photovoltaic strip and within a second thickness of the optical elastomer material to define the spacing between the surface region and the second side of the optical concentrating element. In a specific embodiment, the first interface is substantially free from one or more gaps (e.g., air gaps and/or pockets) and the second interface substantially free from one or more gaps to form a substantially continuous optical interface from the first side of the optical concentrating element, through the first interface, and through the second interface to the photovoltaic strip.
Abstract:
A solar cell device. The device has a housing member. The device also has a lead frame member coupled to the housing member. In a preferred embodiment, the lead frame member has at least one photovoltaic strip thereon, which has a surface region and a back side region. The device has an optical elastomer material having a first thickness overlying the surface region of the photovoltaic surface. The device has a second substrate member comprising at least one optical concentrating element thereon. The optical concentrating element has a first side and a second side. The device has a first interface within a vicinity of the surface region and the first thickness of the optical elastomer material and a second interface within a vicinity of the second side and the optical elastomer material. In a specific embodiment, the optical concentrating element is coupled to the surface region of the photovoltaic strip such that the optical elastomer material is in between the surface region of the photovoltaic strip and the second side of the optical concentrating element. In a specific embodiment, the device has a spacing comprising essentially the optical elastomer material between the second side of the optical concentrating element and the surface region of the photovoltaic strip. The device has a plurality of particles having a predetermined dimension (e.g., non-compressible and substantially non-deformable particles) spatially disposed overlying the surface region of the photovoltaic strip and within a second thickness of the optical elastomer material to define the spacing between the surface region and the second side of the optical concentrating element. In a specific embodiment, the first interface is substantially free from one or more gaps (e.g., air gaps and/or pockets) and the second interface substantially free from one or more gaps to form a substantially continuous optical interface from the first side of the optical concentrating element, through the first interface, and through the second interface to the photovoltaic strip.
Abstract:
A method of producing a carrier wafer for an integrated circuit is disclosed. The method comprises the steps of providing a carrier wafer having a plurality of bump pads and a plurality of wire bond pads; providing a passivation layer on the carrier wafer; etching a passivation layer over at least a portion of the plurality of bump pads; applying solder bumps on the plurality of bump pads; and separately etching the passivation layer over at least a portion of the plurality of wire bond pads. An integrated circuit employing a flip chip is also disclosed.