Abstract:
A system controls a work machine that loads materials onto a conveyance vehicle. The system includes a controller. The controller performs a loading work by the work machine when the conveyance vehicle is stopped at a predetermined loading position. The controller acquires a loading amount onto the conveyance vehicle. The controller determines whether the loading work is finished based on the loading amount. The controller outputs a withdraw command to the conveyance vehicle to withdraw from the loading position upon determining that the loading work is finished. The controller determines whether the conveyance vehicle has withdrawn after outputting the withdraw command.
Abstract:
A work machine loads materials onto a conveyance vehicle. A system for controlling the work machine includes a detection device that detects an operation of the conveyance vehicle, and a controller that controls the work machine. The work machine includes a work implement attached to a rotating body. The controller acquires operation data indicative of an operation of the conveyance vehicle from the detection device. The controller causes the rotating body to rotate toward a predetermined unloading position. The controller determines whether the conveyance vehicle is stopped at a predetermined loading position based on the operation data. The controller causes the work implement to wait on standby at the unloading position upon determining that the conveyance vehicle is operating. The controller controls the work machine to unload materials at the unloading position upon determining that the conveyance vehicle is stopped at the loading position.
Abstract:
A system includes a receiver mounted on a work machine, and a processor. The receiver receives a signal usable to identify a position of the work machine. The processor acquires a position of the receiver from the signal received by the receiver. The processor acquires a calculated position of a calibration point in the work machine by calculating a position of the calibration point from the position of the receiver. The processor acquires an actual position of the calibration point. The processor generates calibration data usable to calibrate a position of a reference point in the work machine by comparing the actual position with the calculated position of the calibration point.
Abstract:
A current terrain acquisition device acquires current terrain information. The current terrain information indicates the current terrain to be worked, and includes the height of the current terrain at a plurality of points. A controller is configured to decide the smoothed height for each of the plurality of points. The controller is configured to decide a smoothed current terrain that includes the smoothed height of the plurality of points. The controller is configured to decide a virtual design surface on the basis of the smoothed current terrain. The controller is configured to generate a command signal to a work implement of the work vehicle to move the work implement along the virtual design surface.
Abstract:
A bulldozer includes a blade pivotably attached to a vehicle body, a blade operation lever, and a blade control section. The blade operation lever outputs a lowering instruction signal, a holding instruction signal, and a raising instruction signal for the blade. The blade control section controls a height of the blade according the signal input. The blade control section can lower the blade to a predetermined position when the lowering instruction signal and the holding instruction signal are input in order after a transmission has been switched from a state, which is different from an advancing state, to the advancing state. The blade control section can raise the blade to a predetermined position when the raising instruction signal and the holding instruction signal are input in order after a transmission has been switched from a state, which is different from a reversing state, to the reversing state.
Abstract:
When a blade load is reduced from a value greater than or equal to a first set load value to a value less than the first set load value, a blade control device is configured to set a virtual designed surface to be closer to a blade than a designed surface is, and is configured to allow the blade to pivot above the virtual designed surface.
Abstract:
When a blade load is reduced from a value greater than or equal to a first set load value to a value less than the first set load value, a blade control device is configured to set a virtual designed surface to be closer to a blade than a designed surface is, and is configured to allow the blade to pivot above the virtual designed surface.
Abstract:
A bulldozer includes a blade pivotably attached to a vehicle body, a blade operation lever, and a blade control section. The blade operation lever outputs a lowering instruction signal, a holding instruction signal, and a raising instruction signal for the blade. The blade control section controls a height of the blade according the signal input. The blade control section can lower the blade to a predetermined position when the lowering instruction signal and the holding instruction signal are input in order after a transmission has been switched from a state, which is different from an advancing state, to the advancing state. The blade control section can raise the blade to a predetermined position when the raising instruction signal and the holding instruction signal are input in order after a transmission has been switched from a state, which is different from a reversing state, to the reversing state.