摘要:
A process for the manufacture of porous structures comprises forming a dry mixture comprising a component providing primary separation capability, a component providing green strength reinforcement capability and, a component providing binding capability and selected from the group consisting of thermoplastic and thermosetting polymers; delivering the mixture to a suitable surface and building a desired thickness thereof; densifying the mixture into tile form desired for the porous structure; removing the densified porous structure from the surface; binding the component providing the primary separation capability by melting the mixture to a temperature of up to about 20.degree. C. higher than the melting point of any thermoplastic component providing binding capability. Porous structures (100, 110, 120, 125, 140, 175) according to the present invention comprise from about 70 to about 90 parts by weight of a component providing primary separation capability (61, 62); from about one to about 15 parts by weight of a component providing green strength reinforcement capability (64, 65); and, from about eight to about 20 parts by weight of a component providing binding capability (67, 68) and selected from the group consisting of thermoplastic and thermosetting polymers.
摘要:
A thermally insulating fixture includes a support bracket, and a thermally insulating member mounted on the support bracket. The support bracket has a middle provided with a sheet plate. The sheet plate includes two hollow portions formed on two ends thereof. Each of the two hollow portions is provided with an abutment laminating the sheet plate. The sheet plate is provided with a through hole. The thermally insulating member covers an exterior of the support bracket. In practice, when the self-tapping screw extends through the through hole of the sheet plate and is screwed and tightened, a force is applied on the abutment. Thus, the abutment reinforces the strength of the support bracket to reduce deformation of the support bracket.
摘要:
A method for forming a stop flange on a self-tapping screw includes locating a shank of a self-tapping screw between two threading dies, fixing one of the two threading dies and moving the other one of the two threading dies to work the shank, the external thread forming section of each of the threading dies performing threading to form an external thread on the shank, inserting the insert and the recessed corner of each of the threading dies into a top of the external thread to form a groove in the shank, and the insert of each of the threading dies gradually squeezing downward an extruded portion that is formed during formation of the groove to form a stop flange on the shank. Thus, the shank is integrally formed with the stop flange, to stop an excessive movement of the external thread.
摘要:
A backlight module and a method for manufacturing a base thereof are provided. The backlight module base includes a back plate and a frame. The back plate has a plate body and at least one sidewall, which includes a wall body and a folding structure bending from the top of the wall body. The folding structure, the plate body, and the wall body together enclose a groove. The frame is formed on the plate body and adjacent to an inner surface of the sidewall. A part of the frame is embedded into the groove. The engagement between the frame and the groove increases the contact area between the frame and the back plate to improve the connection strength. In addition, the folding design of the sidewall increases the rigidity of the whole structure.
摘要:
A backlight module and a method for manufacturing a base thereof are provided. The backlight module base includes a back plate and a frame. The back plate has a plate body and at least one sidewall, which includes a wall body and a folding structure bending from the top of the wall body. The folding structure, the plate body, and the wall body together enclose a groove. The frame is formed on the plate body and adjacent to an inner surface of the sidewall. A part of the frame is embedded into the groove. The engagement between the frame and the groove increases the contact area between the frame and the back plate to improve the connection strength. In addition, the folding design of the sidewall increases the rigidity of the whole structure.
摘要:
A method of treating a hollow fiber membrane microfiltration filter having an influent side and an effluent side to improve performance of the filter is disclosed. The method entails sealing imperfections in surfaces of the filter by flushing the filter with a liquid aqueous suspension of particulates. Filter cartridge devices also are disclosed. The devices may include a bactericidal chamber. A radial flow filter may be included in the devices. The filter cartridges may include a drain tube positioned within the filter for removing of effluent generated by the filter. A plurality of filter cartridges may be positioned on the drain tube.
摘要:
A method for forming a stop flange on a self-tapping screw includes locating a shank of a self-tapping screw between two threading dies, fixing one of the two threading dies and moving the other one of the two threading dies to work the shank, the external thread forming section of each of the threading dies performing threading to form an external thread on the shank, inserting the insert and the recessed corner of each of the threading dies into a top of the external thread to form a groove in the shank, and the insert of each of the threading dies gradually squeezing downward an extruded portion that is formed during formation of the groove to form a stop flange on the shank. Thus, the shank is integrally formed with the stop flange, to stop an excessive movement of the external thread.
摘要:
A thermal insulating screw assembly includes a thermal insulating screw and a thermal insulating washer. The thermal insulating screw has a rotation head, a shank, and an external thread. A thermal insulating portion coats the rotation head and has a plurality of projections each of which is provided with a horizontal face, a vertical face, and an inclined face. The horizontal face is located at a top of each of the projections. The vertical face extends downward from the horizontal face. The inclined face extends inward and downward from the vertical face. The thermal insulating washer is positioned by the projections and has an axial hole which passes through the inclined face and the vertical face to the horizontal face, and is positioned on the horizontal face of each of the projections.